ACCRETION/EJECTION

Interferometry in the near-infrared: a very high angular resolution insight into the accretion/ejection process in young stars

 Coordinatore UNIVERSITE JOSEPH FOURIER GRENOBLE 1 

 Organization address address: "Avenue Centrale, Domaine Universitaire 621"
city: GRENOBLE
postcode: 38041

contact info
Titolo: Mr.
Nome: Yann
Cognome: Le Roux
Email: send email
Telefono: +33 4 76514488

 Nazionalità Coordinatore France [FR]
 Totale costo 158˙945 €
 EC contributo 158˙945 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2009-IEF
 Funding Scheme MC-IEF
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-12-01   -   2013-11-30

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    UNIVERSITE JOSEPH FOURIER GRENOBLE 1

 Organization address address: "Avenue Centrale, Domaine Universitaire 621"
city: GRENOBLE
postcode: 38041

contact info
Titolo: Mr.
Nome: Yann
Cognome: Le Roux
Email: send email
Telefono: +33 4 76514488

FR (GRENOBLE) coordinator 158˙945.60

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

star    astrophysical    models    crucial    stars    region    jet    critical    observations    au    resolution    scales    ejection    mechanism    accretion    angular    young    interferometric    regions   

 Obiettivo del progetto (Objective)

'A crucial problem in star formation is to understand the physical mechanism by which mass is ejected by young stars and collimated into stellar jets and the nature of the link with the accretion process. The interaction of outflowing material with the parental cloud is observable on scales from hundreds of astronomical units (AU) up to parsec scales and is relatively well understood. Conversely, both accretion and ejection take place on very small scales, from a few down to fractions of AU (i.e. milliarcsecond scales for the nearest star forming regions). Thus direct observations of the critical regions has been long hindered by the lack of high angular resolution facilities. The goal of this project is to probe the accretion/ejection region for the first time, by means of very high angular resolution near-infrared interferometric observations (~0.001"). In particular, it is proposed to exploit the unique capabilities of the AMBER instrument at the Very Large Telescope Interferometer to observe the inner region of the accretion disk and the base of the jet down to sub-AU scales in young accreting stars. The analysis of complementary observations at ~0.1" angular resolution will trace the jet collimation/acceleration region and the accretion/ejection interplay on larger scales (tens of AU). These observations, as well as dedicated models of the emission in both permitted and forbidden lines, are crucial for a proper interpretation of interferometric data. The proposed multifaceted approach will provide long-awaited critical observational constraints to test the proposed models of jet launching and magnetospheric accretion, which are central to both star and planet formation. Moreover, the accretion/ejection mechanism is at work in a large range of astrophysical objects from active galactic nuclei to brown dwarfs. Hence, the results of this project will have repercussions for several astrophysical disciplines from extragalactic astronomy to planetary science.'

Altri progetti dello stesso programma (FP7-PEOPLE)

EIPOD (2009)

European Molecular Biology Laboratory Interdisciplinary Postdocs

Read More  

MEDIATED METALLATION (2008)

Alkali-Metal-Mediated Metallation

Read More  

PROLIFERA (2012)

PROLIFERA - Proliferative Arrest and its Ecological Relevance as a Resource Allocation Strategy in Arabidopsis

Read More