SUPERRAD

Demonstration of superradiance in a semiconductor nanostructure

 Coordinatore CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Dr.
Nome: Jean-Xavier
Cognome: Boucherle
Email: send email
Telefono: +33 4 76881005
Fax: +33 4 76881174

 Nazionalità Coordinatore France [FR]
 Totale costo 45˙000 €
 EC contributo 45˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-RG
 Funding Scheme MC-ERG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-03-01   -   2014-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Dr.
Nome: Jean-Xavier
Cognome: Boucherle
Email: send email
Telefono: +33 4 76881005
Fax: +33 4 76881174

FR (PARIS) coordinator 45˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

nanostructures    spontaneous    coherent    spectral    broadening    excitons    semiconductor    ultra    inhomogeneous    emission    emitters    ensemble    sr    light       donor    radiation    first   

 Obiettivo del progetto (Objective)

'Superradiance (SR) refers to spontaneous quantum phase transition, in which a self-organized build up of coherent radiation within an ensemble of quasi-degenerate emitters occurs. It was first noted by Dicke back in 1954 that, with increasing their density, the collection of N radiators starts to emit much faster and stronger comparing to spontaneous emission of individuals. More precisely, when packing up N identical emitters into the space comparable with a cube of the radiation wavelength, instead of observing isotropic and exponentially decaying emission, one produces a fierce, directional radiation burst, having a lagged peak intensity scaling like N2 and N-times reduced duration with respect to the spontaneous emission. Apart from the fundamental aspect, the research for SR is motivated by the prospects in producing ultra-short, intense, coherent light pulses - in alternative to lasers. The prerequisite for creating a SR emission is a spectral uniformity of participating transitions. For that reason SR was first successfully observed in atomic and molecular ensembles. As concerns semiconductor nanostructures, nowadays widely used in optoelectronics, the evidence for SR has never been provided, as the SR effect is obscured by the spectral inhomogeneous broadening in a semiconductor matrix. The goal of this project is to achieve the first proof for SR within an ensemble of individual emitters embedded in a nanostructured semiconductor. To this aim, we will focus our efforts on donor-bound-excitons (D0X), which are excitons (Coulomb correlated electron-hole pairs) localized on donor impurities in a semiconductor, for instance Si replacing Ga atoms in a GaAs lattice. D0Xs are characterized by small, sub-meV, inhomogeneous broadening, large oscillator strength and a few hundreds ps lifetime - all acting in favor for inducing SR. Our approach will employ methods of both linear (PL, streak camera) and nonlinear (up-conversion) time-resolved optical spectroscopy.'

Introduzione (Teaser)

Interactions of light and matter form the basis of numerous phenomena and novel devices. With their one of a kind experimental setup, scientists have produced pioneering results with ultra-short coherent light bursts in semiconductor nanostructures.

Altri progetti dello stesso programma (FP7-PEOPLE)

PROTEASOME-AMYLOID (2010)

Linking aggregation of alpha-synuclein to proteasomal dysfunction; an investigation of the causes leading to Parkinson's disease

Read More  

EXTREMISM (2015)

Interactive extremism. A comparative psychosocial study of the emotional dynamics of far 'right' extremisms in Germany and Great Britain

Read More  

SIDE (2012)

Safety in Design Ergonomics

Read More