Coordinatore | TEL AVIV UNIVERSITY
Organization address
address: RAMAT AVIV contact info |
Nazionalità Coordinatore | Israel [IL] |
Totale costo | 100˙000 € |
EC contributo | 100˙000 € |
Programma | FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013) |
Code Call | FP7-PEOPLE-2010-RG |
Funding Scheme | MC-IRG |
Anno di inizio | 2011 |
Periodo (anno-mese-giorno) | 2011-03-01 - 2015-02-28 |
# | ||||
---|---|---|---|---|
1 |
TEL AVIV UNIVERSITY
Organization address
address: RAMAT AVIV contact info |
IL (TEL AVIV) | coordinator | 100˙000.00 |
Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.
'During development, cells differentiate into well defined patterns through an orchestrated program in space and time. This differentiation into different cell states is coordinated by intercellular signaling and is interpreted via intracellular genetic circuits. However, many developmental processes also involve changes in cell morphology that occur concurrently with the differentiation process. How such morphological changes affect intercellular signaling? How cell morphology changes are controlled by intercellular signaling? And how the dynamic interplay between intercellular signaling, intracellular genetic circuits and regulation of cellular morphology generate the observed differentiation patterns? We will address these questions in the context of the Notch signaling pathway and Notch dependent pattern formation processes. Using a combination of micropatterning devices and quantitative time lapse microscopy, we will first measure the dependence of Notch signaling on the properties of the boundary between pairs of cells (e.g. length of boundary, molecular and mechanical properties). We will then use the information obtained from these measurements to construct mathematical models of Notch dependent pattern formation processes combining cell-cell signaling, intracellular circuitry and cell morphology in a unified manner. Such a combined experimental and theoretical approach will not only provide new insights into the Notch signaling pathway but will also provide a new framework for a whole class of developmental patterning processes involving morphological changes during differentiation.'
During development, various signalling pathways are activated or silenced directing cell differentiation in space and time. An EU-funded study is investigating the relationship between signalling and cell morphology in determining cell fate decisions.
Dual cancer nanotherapies combining magnetic and plasmonic hyperthermia
Read MoreLow power high image quality display using colour sequential display technology
Read MoreThe relationship between the intestinal mucosal barrier and gut microbiota in metabolic diseases
Read More