NIOS

High Efficiency Nanostructured Electrodes for Organic Solar Cells Using Solution Processed LiF

 Coordinatore Sabanci University 

 Organization address address: Orhanli Tuzla
city: ISTANBUL
postcode: 34956

contact info
Titolo: Ms.
Nome: Zeynep
Cognome: Birsel
Email: send email
Telefono: +90 216 483 9110
Fax: +90 216 483 9118

 Nazionalità Coordinatore Turkey [TR]
 Totale costo 45˙000 €
 EC contributo 45˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-RG
 Funding Scheme MC-ERG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-03-01   -   2014-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    Sabanci University

 Organization address address: Orhanli Tuzla
city: ISTANBUL
postcode: 34956

contact info
Titolo: Ms.
Nome: Zeynep
Cognome: Birsel
Email: send email
Telefono: +90 216 483 9110
Fax: +90 216 483 9118

TR (ISTANBUL) coordinator 45˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

solar    device    cells    lif    processed    conventional    interlayers    electrodes    nanoparticles    electrode    interface    surface    solution    structure    structures    interfacial    efficiency    organic    performance    charge   

 Obiettivo del progetto (Objective)

'Conventional electrode structures for organic electronics often rely on interlayers to enhance the efficiency at inorganic electrodes. In this project, we propose to implement improved electrodes in organic solar cells by introducing solution processed LiF interlayers. The performance of devices would be compared with state- of-the-art production devices. A potential increase of performance of 1-2 % with substantial decrease in production costs may be possible. As effective charge balance is a critical component of device operation, optimization of one interface can be changed by modifications at the counter-electrode, so we propose to modify both interfaces in a controlled and systematic way. Recent work on surface modification of indium tin oxide suggests that solution processed LiF can be used to tune the surface work function. LiF has been known to improve device efficiency, although the exact mechanism is still intensely debated. To realize the most effective electrode structure for solar cells, structured layers of solution-processed LiF nanoparticles would be investigated and compared with conventional structures. At the optimal thicknesses for device performance, thermal evaporated LiF forms nanoparticles on organic surfaces. Solution processing would allow controlled assembly of the LiF dispersion on the organic surface, thereby enabling studies of the nanostructured electrode/organic interface on performance. Systematically changing the surface with arrays of nanoparticles would also facilitate a relation between the effects of roughness and electronic properties and device performance. The overall objective of this research plan is to produce alternative electrodes, with a high degree of control over the nanoscale structure, for organic solar cells. Tailoring interfacial structure with improved charge extraction and prevention of detrimental interfacial quenching is a break through milestone on the road to commercialization of organic solar cell devices.'

Altri progetti dello stesso programma (FP7-PEOPLE)

HYPOXPROBE (2013)

The development of hypoxia-activated probes for imaging and therapy

Read More  

GASTIME (2012)

GAS SEEPS AND SUBMARINE SLIDES IN THE EASTERN MEDITERRANEAN: TOWARD COMPREHENSIVE GEOHAZARD PREVENTION

Read More  

RNAREGMAP (2013)

Condition specific RNA Regulatory Maps

Read More