RSC AND RMCF

Rigidity of Scalar Curvature and Regularity for Mean Curvature Flow

 Coordinatore IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE 

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Ms.
Nome: Brooke
Cognome: Alasya
Email: send email
Telefono: +44 207 594 1181
Fax: +44 207 594 1418

 Nazionalità Coordinatore United Kingdom [UK]
 Totale costo 100˙000 €
 EC contributo 100˙000 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2010-RG
 Funding Scheme MC-IRG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-04-01   -   2015-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE, TECHNOLOGY AND MEDICINE

 Organization address address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ

contact info
Titolo: Ms.
Nome: Brooke
Cognome: Alasya
Email: send email
Telefono: +44 207 594 1181
Fax: +44 207 594 1418

UK (LONDON) coordinator 100˙000.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

consists    lagrangian    surfaces    last    conjecture    yau    slag    plan    manifolds    minimal    problem    singularities    positive    scalar    blow    min    area    bounds    geometry    years    curvature    ups    flow   

 Obiettivo del progetto (Objective)

'The interplay between Geometry and Analysis has been among the most fruitful mathematical ideas in recent years, the most obvious example being Perelman's proof of Poincare' conjecture. I plan to pursue further this approach and make distinct progress in two different problems.

Scalar Curvature: A classical theorem in Riemannian Geometry states that nonnegative scalar curvature metrics which are flat outside a compact set must be Euclidean. The equivalent problem for positive scalar curvature is known as the Min-Oo conjecture and was recently disproven by Brendle, Marques, and myself.

I plan to show uniform area bounds for minimal surfaces in manifolds with positive scalar curvature where the bounds are attained if and only if we are on a round sphere. I also plan to show that those manifolds have an infinite number of minimal surfaces (Yau's conjecture). My approach consists of studying min-max methods in order to obtain existence of higher-index minimal surfaces.

Mean curvature flow: An hard open problem consists in determining which Lagrangians in a Calabi-Yau admit a minimal Lagrangian (SLag) in their isotopy class. A complete answer would be a breakthrough of considerable size. A possible approach consists of deforming a given Lagrangian in the direction which decreases area the most and hope to show convergence to a SLag. The difficulty with this method is that finite-time singularities can occur.

I plan to study the regularity theory for this flow and show that, for surfaces, singularities are isolated in space. My approach consists in classifying the possible blow-ups and find monotone quantities which will rule out non SLag blow-ups.

In October of last year I completed 9 years in the USA where the last 2 were spent as an Assistant Professor at Princeton University. Due to personal reasons I decided to move back to Europe. Hence this grant will provide me with the necessary financial support to continue my research.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ITERATE (2014)

Improved heTErodyne Receiving Arrays for TEraherzt applications

Read More  

SVASG (2011)

Structural Variation and Adaptation of the Stickleback Genome

Read More  

FEDERATES (2012)

A Foundation for Engineering Decentralized Self-Adaptive Software Systems

Read More