PAINEURONS

Functional significance of nociceptive primary sensory neurons diversity

 Coordinatore CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE 

Spiacenti, non ci sono informazioni su questo coordinatore. Contattare Fabio per maggiori infomrazioni, grazie.

 Nazionalità Coordinatore France [FR]
 Totale costo 1˙457˙455 €
 EC contributo 1˙457˙455 €
 Programma FP7-IDEAS-ERC
Specific programme: "Ideas" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call ERC-2010-StG_20091118
 Funding Scheme ERC-SG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-04-01   -   2016-03-31

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Dr.
Nome: Abdelaziz
Cognome: Moqrich
Email: send email
Telefono: +33 4 91269765
Fax: +33 4 91269748

FR (PARIS) hostInstitution 1˙457˙455.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE

 Organization address address: Rue Michel -Ange 3
city: PARIS
postcode: 75794

contact info
Titolo: Ms.
Nome: Béatrice
Cognome: Saint-Cricq
Email: send email
Telefono: +33 4 91 16 40 08
Fax: +33 4 91 77 93 04

FR (PARIS) hostInstitution 1˙457˙455.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

sensory    modalities    genes    precise    primary    neurons    functional    diversity    function    subtypes    molecular    discrete    models    anatomical    neuronal    nociceptive   

 Obiettivo del progetto (Objective)

'Unravelling the precise in vivo function of a particular neuronal subpopulation is one of the most challenging issues in neurobiology. Nociceptive primary sensory neurons represent a powerful model system to address this fundamental question. These neurons convey a large cohort of perceptual sensory modalities including thermal, mechanical and chemical stimuli from the periphery to the spinal cord. Nociceptive neurons encompass an extremely heterogeneous population with respect to their morphological, anatomical, electrophysiological and molecular properties. In spite of the efforts, the functional significance of this remarkable diversity has remained elusive. Our proposed project, show our contribution to the expansion of the repertoire of molecules specifying discrete subsets of primary nociceptive neurons and describes original and highly versatile mice models in which the loci of our favourite genes have been genetically engineered to allow conditional gene inactivation and inducible cell ablation of discrete nociceptive neuronal subtypes. Molecular, anatomical, physiological and behavioural analyses of such models will allow to (i) unravel the role of each of our favorite genes in the specification/function of the sensory neuronal subtypes and (ii) correlate discrete subsets of nociceptive neurons to clearly defined sensory modalities. Understanding how diversity in neuronal phenotypes is accomplished is only the first step to deepen into the mechanisms of pain. If we know how a precise neuronal subtype is generated, we can subsequently analyze not only basic aspects of its physiology, but also more medically oriented aspects like its functional role under pathological conditions, its chronic changes in response to inflammation and analgesic treatments'

Altri progetti dello stesso programma (FP7-IDEAS-ERC)

REDIRECT (2008)

Reconciling Biodiversity and Development through Direct Payments for Conservation

Read More  

TQFT (2009)

The geometry of topological quantum field theories

Read More  

PPHPI (2012)

Physical principles in host-pathogen interactions

Read More