MORPHOMECHANICS

Emergence of tissue mechanical properties from molecular and cellular activity during morphogenesis

 Coordinatore AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS 

 Organization address address: CALLE SERRANO 117
city: MADRID
postcode: 28006

contact info
Titolo: Mr.
Nome: Eusebio
Cognome: Jiménez Arroyo
Email: send email
Telefono: 34915668852

 Nazionalità Coordinatore Spain [ES]
 Totale costo 87˙500 €
 EC contributo 87˙500 €
 Programma FP7-PEOPLE
Specific programme "People" implementing the Seventh Framework Programme of the European Community for research, technological development and demonstration activities (2007 to 2013)
 Code Call FP7-PEOPLE-2011-CIG
 Funding Scheme MC-CIG
 Anno di inizio 2011
 Periodo (anno-mese-giorno) 2011-09-01   -   2015-02-28

 Partecipanti

# participant  country  role  EC contrib. [€] 
1    AGENCIA ESTATAL CONSEJO SUPERIOR DE INVESTIGACIONES CIENTIFICAS

 Organization address address: CALLE SERRANO 117
city: MADRID
postcode: 28006

contact info
Titolo: Mr.
Nome: Eusebio
Cognome: Jiménez Arroyo
Email: send email
Telefono: 34915668852

ES (MADRID) coordinator 87˙500.00

Mappa


 Word cloud

Esplora la "nuvola delle parole (Word Cloud) per avere un'idea di massima del progetto.

cell    actomyosin    cells    tissue    coordinated    tissues    mechanical    dynamic    molecular    obtain    morphogenesis    give    cellular    events   

 Obiettivo del progetto (Objective)

'Morphogenesis refers to the set of complex movements and deformations that tissues experience during development to give rise to the three dimensional form of organs and organisms. From a biomechanical perspective tissues represent a unique class of materials, which exhibit dynamic mechanical properties that evolve over time. Little is known about how these macroscopic properties arise from the interplay and integration of molecular, cellular and tissue events. In this project, I propose to use the process of Dorsal Closure of the Drosophila embryo to undertake a dynamic study of morphogenesis spanning the molecular, cellular and tissue levels, to obtain insights into how tissue properties emerge from the coordinated activity of its constituent cells. These studies will focus on the amnioserosa, one of the main force-generating tissues during DC that has proved to be a powerful system to study the emergence of morphogenetic forces. The focus of this project is to understand the molecular mechanisms underlying actomyosin activity, how they translate into effective cell shape changes and how this activity is coordinated across the whole tissue to give rise to the contractile activity of the tissue. For this, I will use a combination of classical genetics and state of the art microscope techniques to obtain quantitative information on the dynamic behaviour of molecules, sub-cellular modules and cells. I will investigate how molecular and cellular events impinge on the mechanical properties of the tissue, which will be probed by laser ablation experiments in wild type and in embryos with perturbed actomyosin dynamics. The multi-disciplinary research outlined in this project has the potential to make significant contributions to the young field of cell-developmental biology and the physical and engineering sciences.'

Altri progetti dello stesso programma (FP7-PEOPLE)

ASADO-CH (2014)

Development and application of Artificial Systems for Activation of DiOxygen and C-H bonds

Read More  

NULARD (2014)

LAr RD for neutrino physics

Read More  

DEKKER40 (2007)

Novel approaches towards understanding of gene transcription using small molecules as tools

Read More