Explore the words cloud of the TiFuN project. It provides you a very rough idea of what is the project "TiFuN" about.
The following table provides information about the project.
Coordinator |
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Organization address contact info |
Coordinator Country | France [FR] |
Project website | http://onlinelibrary.wiley.com/doi/10.1002/advs.201600280/epdf |
Total cost | 185˙076 € |
EC max contribution | 185˙076 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2014 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2015 |
Duration (year-month-day) | from 2015-04-01 to 2017-03-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS | FR (PARIS) | coordinator | 185˙076.00 |
Photothermal Imaging (PhI) is an absorption detection technique used for the detection of single gold nanoparticles (NPs), which can be a valuable tool to tackle complex cellular activities. In order to study the dynamics of individual proteins in confined regions such as in neural synapses or in cell adhesion sites, small nanoprobes are needed. Gold NPs (~ 5 nm) can be used, however their surface plasmon resonance (SPR) is centered at 530 nm, a spectral domain where absorption of cellular organelles results in a background signal, which limits the sensitivity of PhI. A brilliant way to find the needle in the haystack is the development of a novel nanoprobe having NIR-absorption, smaller size and high specificity. In “TiFuN”, we will achieve this goal by developing tiny (length/diameter <10 nm/5 nm) gold nanorods (T-rods), an elongated gold NP with tunable SPR in the NIR-window. Different aspect ratio T-rods harvested using Density Gradient Ultrahigh (DGU) centrifugation protocol will be highly promising probes for multicolor labeling and detection of proteins. A dedicated PhI setup based on NIR-laser sources will also be built. Subsequently, the bioconjuagted T-rods and NIR-PhI will be used to study the dynamics of neurotransmitter receptors in synapse and integrin proteins in cell adhesion sites owing to their small core volume, NIR-absorption, exceptional photostability, and non-toxicity. Bioconjugated T-rods will also display the unique property of being easily detected with light and electron microscopy at the single- molecule level, and therefore will be a valuable tool for light/electron correlative microscopy. This highly interdisciplinary project (optics, chemistry and biology) will utilize the fellow’s expertise in nanochemistry in combination with world-leading expertise of Prof. Lounis group in single-molecule detection and Dr. Choquet institute in neuroscience and cell biology.
year | authors and title | journal | last update |
---|---|---|---|
2017 |
Edakkattuparambil Sidharth Shibu, Nadezda Varkentina, Laurent Cognet, Brahim Lounis Small Gold Nanorods with Tunable Absorption for Photothermal Microscopy in Cells published pages: 1600280, ISSN: 2198-3844, DOI: 10.1002/advs.201600280 |
Advanced Science 4/2 | 2019-07-23 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TIFUN" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "TIFUN" are provided by the European Opendata Portal: CORDIS opendata.
Leveraging the potential of historical spy satellite photography for ecology and conservation
Read More