Opendata, web and dolomites

GENMETASTEM SIGNED

GENOMIC AND METABOLIC REGULATION OF METASTATIC CANCER STEM CELLS

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GENMETASTEM project word cloud

Explore the words cloud of the GENMETASTEM project. It provides you a very rough idea of what is the project "GENMETASTEM" about.

acquire    renew    cancer    prognostic    successfully    molecular    hypothesize    understand    metabolism    mediated    rock    spread    metastasis    self    interdisciplinary    cells    imaging    emt    signalling    markers    participate    regulates    carcinoma    lab    organs    clues    acquisition    regulate    metabolic    shows    elongated    genes    transition    therapies    linked    contractile    biochemistry    regulating    migration    distant    tumour    biology    cellular    link    closely    maintained    relapse    breast    metastatic    traits    regulation    stemness    cell    movement    drug    interestingly    unravelling    amoeboid    contractility    mode    actomyosin    metastasize    invasion    vivo    combines    stem    renewal    melanoma    models    epithelial    deaths    triggered    host    causes    animal    nevertheless    regulated    types    functionally    suggesting    cytoskeletal    cscs    resistance    differentiate    glutamine    mesenchymal    mat    preliminary    data    cues    initiation    rho    ultimate    techniques    unexplored    correlates   

Project "GENMETASTEM" data sheet

The following table provides information about the project.

Coordinator
KING'S COLLEGE LONDON 

Organization address
address: STRAND
city: LONDON
postcode: WC2R 2LS
website: www.kcl.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.kcl.ac.uk
 Total cost 183˙454 €
 EC max contribution 183˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-09-01   to  2018-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KING'S COLLEGE LONDON UK (LONDON) coordinator 183˙454.00

Map

 Project objective

The major causes of cancer deaths are relapse and resistance to current therapies associated with the presence of cancer stem cells (CSCs) and metastatic growth in distant organs. CSCs have the ability to self-renew and differentiate in non-CSCs. In breast cancer, acquisition of stemness properties has been closely related to epithelial-mesenchymal transition (EMT), a key process in cancer invasion and metastasis triggered via Rho-ROCK mediated actomyosin contractility. Interestingly, in melanoma, transition from elongated-mesenchymal to amoeboid mode of movement (MAT) driven by Rho-ROCK signalling has been associated with increased stemness. Furthermore, preliminary data from host lab shows that actomyosin cytoskeletal regulates glutamine metabolism in both melanoma and breast cancer cells. Metabolic cues participate in stem cell self-renewal regulation, suggesting that, in very contractile cells, the regulation of EMT, metastatic spread and tumour initiation might be functionally linked to stemness via metabolic clues. Nevertheless, how very contractile cells regulate genes involved in all these processes remains unexplored. As increasing contractility via EMT in carcinoma cells or via MAT in melanoma cells correlates with increasing stemness, we hypothesize a molecular link between the pathways regulating both migration and stemness abilities, which will be maintained across tumour types (from carcinoma to melanoma). The main goal of this proposal is to understand how tumour cells can acquire stem cell traits to successfully metastasize and how this can be regulated by the actomyosin cytoskeletal by using an interdisciplinary approach that combines state-of-the-art techniques in molecular and cellular biology, biochemistry, in vivo imaging and animal models. This will allow to identify key important genes regulating both stemness traits and metastatic spread with the ultimate goal of unravelling novel drug targets and prognostic markers of distant relapse.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GENMETASTEM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GENMETASTEM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

ENGRAVINg (2019)

Engaging Grammar and Visual Networks

Read More