Explore the words cloud of the virus-DNP-NMR project. It provides you a very rough idea of what is the project "virus-DNP-NMR" about.
The following table provides information about the project.
Coordinator |
CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS
Organization address contact info |
Coordinator Country | France [FR] |
Project website | http://www.cnrs.fr/ |
Total cost | 185˙076 € |
EC max contribution | 185˙076 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2014 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2015 |
Duration (year-month-day) | from 2015-09-01 to 2017-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS | FR (PARIS) | coordinator | 185˙076.00 |
The atomic-level characterization of large viral particles is one of the greatest challenges of modern structural biology, as well as a fundamental step for the design of effective antiviral treatments. In viruses, the viral genome (double- or single-stranded RNA or DNA) is associated to multiple copies of a capsid protein, forming predominantly icosahedral or helical architectures. These complex superstructures are often studied by X-ray crystallography and electron microscopy (EM). However, only information at low resolution is usually available from EM, and extended and flexible architectures do not provide single crystals amenable to diffraction studies. Over the last years, solid-state NMR (ssNMR) has developed into a powerful structural tool for studying structure and dynamics of solid biological samples at atomic resolution and is now uniquely positioned to complement diffraction-based techniques for the characterization of large functional assemblies. However, proteins of large size or that are available in limited amounts are still inaccessible to site-specific NMR studies. Exploiting a unique equipment available in the host institution, the project aims to remove the current bottlenecks and develop improved dynamic nuclear polarization (DNP)-enhanced ssNMR methodology to push forward the limits of applicability of this technique to macromolecular assemblies, opening new avenues to ssNMR in structural biology. Innovative experimental approaches will be developed to overcome the resolution barriers that currently limit the application of high-field DNP, and new spectroscopic tools will be introduced to allow the structure determination of biomolecules under DNP conditions. The effectiveness and versatility of the newly developed methods will be tested on two viral nucleocapsids of different architectures, the icosahedral capsid of non-tailed bacteriophage AP205 and the filamentous, helical nucleocapsid of Measles virus.
year | authors and title | journal | last update |
---|---|---|---|
2016 |
Loren B. Andreas, Kristaps Jaudzems, Jan Stanek, Daniela Lalli, Andrea Bertarello, Tanguy Le Marchand, Diane Cala-De Paepe, Svetlana Kotelovica, Inara Akopjana, Benno Knott, Sebastian Wegner, Frank Engelke, Anne Lesage, Lyndon Emsley, Kaspars Tars, Torsten Herrmann, Guido Pintacuda Structure of fully protonated proteins by proton-detected magic-angle spinning NMR published pages: 9187-9192, ISSN: 0027-8424, DOI: 10.1073/pnas.1602248113 |
Proceedings of the National Academy of Sciences 113/33 | 2019-06-18 |
2016 |
Jan Stanek, Loren B. Andreas, Kristaps Jaudzems, Diane Cala, Daniela Lalli, Andrea Bertarello, Tobias Schubeis, Inara Akopjana, Svetlana Kotelovica, Kaspars Tars, Andrea Pica, Serena Leone, Delia Picone, Zhi-Qiang Xu, Nicholas E. Dixon, Denis Martinez, Mélanie Berbon, Nadia El Mammeri, Abdelmajid Noubhani, Sven Saupe, Birgit Habenstein, Antoine Loquet, Guido Pintacuda NMR Spectroscopic Assignment of Backbone and Side-Chain Protons in Fully Protonated Proteins: Microcrystals, Sedimented Assemblies, and Amyloid Fibrils published pages: 15504-15509, ISSN: 1433-7851, DOI: 10.1002/anie.201607084 |
Angewandte Chemie International Edition 55/50 | 2019-06-18 |
2017 |
Diane Cala-De Paepe, Jan Stanek, Kristaps Jaudzems, Kaspars Tars, Loren B. Andreas, Guido Pintacuda Is protein deuteration beneficial for proton detected solid-state NMR at and above 100Â kHz magic-angle spinning? published pages: , ISSN: 0926-2040, DOI: 10.1016/j.ssnmr.2017.07.004 |
Solid State Nuclear Magnetic Resonance in press | 2019-06-18 |
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VIRUS-DNP-NMR" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "VIRUS-DNP-NMR" are provided by the European Opendata Portal: CORDIS opendata.