Opendata, web and dolomites

CHAT

Control of the Homeostasis of Actin through Time: actin homeostasis during embryonic development by means of single-molecule imaging and simulation in C. elegans

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "CHAT" data sheet

The following table provides information about the project.

Coordinator
INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE 

Organization address
address: RUE DE TOLBIAC 101
city: PARIS
postcode: 75654
website: www.inserm.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Project website http://cell-dynamics.fr
 Total cost 185˙076 €
 EC max contribution 185˙076 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2014
 Funding Scheme MSCA-IF-EF-RI
 Starting year 2015
 Duration (year-month-day) from 2015-04-01   to  2017-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE FR (PARIS) coordinator 46˙269.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 138˙807.00

Map

 Project objective

In embryonic cells, actomyosin forms a cortical reticulated gel that turns over rapidly, is weakly organized, and is composed of a variety of structures, with distinct architectures and dynamics, which are nucleated and elongated by different factors, and bind to specific sets of actin-binding proteins that modulate their dynamics. Understanding how actin is distributed between these structures is critical to understand the biology and mechanics of the actin cytoskeleton and therefore its role in processes ranging from morphogenesis and cell division to endocytosis and polarization. In the proposed work, taking advantage of single-molecule techniques I developed during my previous post-doc, I will use the early C. elegans embryo as a model system to tease out the general rules and the critical regulatory elements that control actin homeostasis. I will follow three major directions: (1) analysis of actin dynamics in a steady-state system, the 1-cell stage embryo during maintenance phase, (2) analysis of the mechanisms underlying actin homeostasis in face of changes in the concentration landscape and biochemical properties of the players and (3) analysis of the modulation of actin dynamics and homeostasis during early embryonic development and between different cell types. I propose here a research program to expand our knowledge of how the structure of the actin meshwork is regulated and controls morphogenesis in embryonic cells, and in particular the mechanical properties of the cell. Importantly this program explores how modulations of the concentrations of actin-interacting proteins impinge on the dynamics of the actin cytoskeleton as a whole, and should improve our understanding of the general mechanisms that underlie the regulation of the actin cytoskeleton machinery, and how deregulations may be responsible for the onset of specific behaviors of the actin cytoskeleton that may eventually result in the development of cancer-like cellular behaviors.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CHAT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CHAT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

DEAP (2019)

Development of Epithelium Apical Polarity: Does the mechanical cell-cell adhesions play a role?

Read More  

LiquidEff (2019)

LiquidEff: Algebraic Foundations for Liquid Effects

Read More  

Cata-rotors (2019)

Visualising age- and cataract-related changed within cell membranes of human eye lens using molecular rotors

Read More