Opendata, web and dolomites

LiNaBioFluid

Laser-induced Nanostructures as Biomimetic Model of Fluid Transport in the Integument of Animals

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 LiNaBioFluid project word cloud

Explore the words cloud of the LiNaBioFluid project. It provides you a very rough idea of what is the project "LiNaBioFluid" about.

takes    micro    extension    special    wear    organization    spreading    bug    liquids    strategies    surfaces    anticipated    spiders    integument    fabrication    drag    bark    mimic    wettability    oil    air    sustainable    water    fast    lubrication    retention    wetting    geckos    structures    environment    fern    skin    extreme    emission    liquid    functions    animal    lizards    nano    laser    surface    textures    excellent    capillary    device    co2    optimized    underwater    combined    outcome    salvinia    innovative    power    swim    nanometer    moisture    place    transport    cooling    super    network    adaptations    technological    self    darken    flat    outstanding    rain    radically    wettable    feasible    onto    directional    friction    harvesting    plain    examples    topography    spreads    adhesion    lizard    body    leveraging    opposed    hierarchical    ing    employ    biomimetic    separation    direction    fall    capillaries    bearings    geometry    bugs    slide   

Project "LiNaBioFluid" data sheet

The following table provides information about the project.

Coordinator
IDRYMA TECHNOLOGIAS KAI EREVNAS 

Organization address
address: N PLASTIRA STR 100
city: IRAKLEIO
postcode: 70013
website: www.forth.gr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Greece [EL]
 Project website http://www.laserbiofluid.eu
 Total cost 3˙024˙827 €
 EC max contribution 3˙024˙827 € (100%)
 Programme 1. H2020-EU.1.2.1. (FET Open)
 Code Call H2020-FETOPEN-2014-2015-RIA
 Funding Scheme RIA
 Starting year 2015
 Duration (year-month-day) from 2015-07-01   to  2018-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IDRYMA TECHNOLOGIAS KAI EREVNAS EL (IRAKLEIO) coordinator 492˙250.00
2    UNIVERSITAT LINZ AT (LINZ) participant 533˙007.00
3    FRAUNHOFER GESELLSCHAFT ZUR FOERDERUNG DER ANGEWANDTEN FORSCHUNG E.V. DE (MUNCHEN) participant 484˙096.00
4    BUNDESANSTALT FUER MATERIALFORSCHUNG UND -PRUEFUNG DE (BERLIN) participant 428˙750.00
5    RHEINISCH-WESTFAELISCHE TECHNISCHE HOCHSCHULE AACHEN DE (AACHEN) participant 422˙625.00
6    AGENCIA ESTATAL CONSEJO SUPERIOR DEINVESTIGACIONES CIENTIFICAS ES (MADRID) participant 390˙082.00
7    HIGH TECH COATINGS GMBH AT (LAAKIRCHEN) participant 274˙016.00

Map

 Project objective

The integument of an animal body has various functions, which are often achieved by specific micro- and/or nano- hierarchical structures. Examples are the very low water friction and air retention of water spiders or the swim fern of salvinia and the outstanding adhesion properties of geckos. In this project, we will employ advanced laser-processing strategies based on self-organization, to mimic the specific topography and the excellent wetting properties of the integument of bark bugs and moisture harvesting lizards resulting from adaptations to their environment. Flat bark bugs darken during rain fall due to a super-wettable body surface with capillaries out of which water spreads onto plain areas of the bug. For moisture harvesting in lizards wettability takes place in opposed direction, i.e. from plain areas into a capillary network on the skin. A fast and directional transport results from a special geometry of capillaries. Thus as general objective we want to test whether both effects, i.e. fast capillary transport (lizard) and liquid spreading onto plain areas (bark bugs), can be combined by optimized structures with hierarchical geometry. The outcome of this innovative biomimetic exploitation of wetting effects is expected to lead to a radically new technological approach of laser-generated surface textures on micro- and nanometer scale. Especially for control of friction and wear in liquids, leveraging new results can be expected, e.g. for developing slide bearings. The extension of surface structures over large areas is feasible. Thus, laser-fabrication of biomimetic surfaces with extreme wetting properties can be also anticipated in further applications, e.g. lubrication, water and oil separation, reduced drag in underwater applications, high power device cooling. All related to an innovative and sustainable reduction of CO2 emission.

 Deliverables

List of deliverables.
Images of first results of lizard-like surface morphologies Websites, patent fillings, videos etc. 2019-08-07 13:58:51
Public summary of biological fluid transport mechanisms on web site Websites, patent fillings, videos etc. 2019-08-07 13:58:51
Publication of results on lizard skin Documents, reports 2019-08-07 13:58:51
“LiNaBioFluid” web site Websites, patent fillings, videos etc. 2019-08-07 13:58:51
Publication of results on laser-induced surface structures on inorganic materials Documents, reports 2019-08-07 13:58:50
SEM images of nanostructures on web site Websites, patent fillings, videos etc. 2019-08-07 13:58:50
Large-area laser-fabricated self-organized structures Documents, reports 2019-08-07 13:58:51
Data Management Plan (DMP) - interim report Documents, reports 2019-08-07 13:58:49
Demonstrator for a low-friction slide bearing Demonstrators, pilots, prototypes 2019-08-07 13:58:49
Laser-fabricated biomimetic structures up-scaled to manufacturing size and shape Documents, reports 2019-08-07 13:58:49
Publication of results on hydrodynamic modelling Documents, reports 2019-08-07 13:58:49
Large-area laser-fabricated biomimetic structures Documents, reports 2019-08-07 13:58:48
Scientific articles and conference contributions Websites, patent fillings, videos etc. 2019-08-07 13:58:49
Images of first results of bug-like surface morphologies Websites, patent fillings, videos etc. 2019-08-07 13:58:49
Publication of results on bug cuticles Documents, reports 2019-08-07 13:58:48
Publication of results on laser-mimicking of bug-like surface structures and its fluid transport Documents, reports 2019-08-07 13:58:48
Public summary of laser processing of bug-like surface structures with fast fluid transport Websites, patent fillings, videos etc. 2019-08-07 13:58:49
Data Management Plan (DMP) - final report Documents, reports 2019-08-07 13:58:49

Take a look to the deliverables list in detail:  detailed list of LiNaBioFluid deliverables.

 Publications

year authors and title journal last update
List of publications.
2018 Heitz,Johannes
Deliverable 2.2: SEM images of nanostructures
published pages: , ISSN: , DOI: 10.5281/zenodo.1292959
1 2019-08-07
2017 George D. Tsibidis, Emmanuel Stratakis
Ripple formation on silver after irradiation with radially polarised ultrashort-pulsed lasers
published pages: 163106, ISSN: 0021-8979, DOI: 10.1063/1.4982071
Journal of Applied Physics 121/16 2019-08-07

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "LINABIOFLUID" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "LINABIOFLUID" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.2.1.)

ATEMPGRAD (2019)

Analysing Temperature Effects with a Mobile and Precise Gradient Device

Read More  

ALICE (2019)

Active Living Infrastructure: Controlled Environment

Read More  

CANCER SCAN (2019)

A Body Scan for Cancer Detection using Quantum Technology

Read More