Opendata, web and dolomites

AVATAR TERMINATED

Integrating Genomics and Avatar Mouse Models to Personalize Pancreatic Cancer Treatment

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "AVATAR" data sheet

The following table provides information about the project.

Coordinator
HOSPITAL UNIVERSITARIO DE FUENLABRADA 

Organization address
address: CALLE DEL MOLINO 2
city: FUENLABRADA
postcode: 28942
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 2˙498˙687 €
 EC max contribution 2˙498˙687 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2014-ADG
 Funding Scheme ERC-ADG
 Starting year 2015
 Duration (year-month-day) from 2015-10-01   to  2020-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    HOSPITAL UNIVERSITARIO DE FUENLABRADA ES (FUENLABRADA) coordinator 1˙997˙228.00
2    FUNDACION CENTRO NACIONAL DE INVESTIGACIONES ONCOLOGICAS CARLOS III ES (MADRID) participant 501˙459.00

Map

 Project objective

The prognosis of patients with metastatic pancreatic cancer (PDAC) is very poor. Recent studies have started to elucidate the genetic landscape of this disease to show that PDAC is a genetically complex, unstable, and heterogeneous cancer. However, in-depth analysis of individual patient genomes couple with personalize Avatar mouse models is providing highly effective therapeutic opportunities for the individual patient. Thus, metastatic PDAC appears a candidate disease to implement a genomics-base, personalized treatment approach. In this project, we will conduct an open label, multicenter, randomized phase III study in patients with standard of care resistant metastatic pancreatic cancer aiming to test the hypothesis that an integrated personalized treatment approach improves survival compare to a conventional treatment. Patients randomized to the personalize treatment arm will undergo a biopsy of a metastatic lesion to perform a targeted genome analysis using next generation sequencing. In addition, we will generate a personalize Avatar mouse model from the same patient. We will employ sophisticated bioinformatic analysis as well as mining of drug response-genetic databases to select, for each individual patient, candidate therapeutic targets that will be experimentally tested in the patient´s Avatar model to select the most effective regimen that will ultimately applied to the patient. In addition, based on the genomic data, we will design an individualized monitoring plan for each patient using BEAMing technology to monitor circulating levels of mutated genes. Furthermore, with a discovery goal, we will perform in depth genomic analysis of metastatic PDAC lesions in this cohort of clinically well-annotated patients with Avatar mouse models for therapeutic validation. Overall we expect this work will contribute to our understanding of PDAC and will favourably impact the treatment of this dismal cancer.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "AVATAR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "AVATAR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More  

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

MATCH (2020)

Discovering a novel allergen immunotherapy in house dust mite allergy tolerance research

Read More