Opendata, web and dolomites

ITHERLAB

In-situ thermal rock properties lab

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "ITHERLAB" data sheet

The following table provides information about the project.

Coordinator
HELMHOLTZ ZENTRUM POTSDAM DEUTSCHESGEOFORSCHUNGSZENTRUM GFZ 

Organization address
address: TELEGRAFENBERG 17
city: POTSDAM
postcode: 14473
website: www.gfz-potsdam.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Project website http://www.itherlab.science
 Total cost 171˙460 €
 EC max contribution 171˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-10-01   to  2019-04-02

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    HELMHOLTZ ZENTRUM POTSDAM DEUTSCHESGEOFORSCHUNGSZENTRUM GFZ DE (POTSDAM) coordinator 171˙460.00

Map

 Project objective

The ITHERLAB project investigates the influence of in-situ (present state in the geological subsurface) pressure and temperature on rock thermal properties (thermal conductivity and thermal diffusivity) as one of the essential thermal properties in the evaluation of the Earth thermal field. The ITHERLAB project will establish mathematic formulations for p/T dependence of both parameters and demonstrate whether micro-structural effects affect these relations for different rock types. For that purpose, an innovative laboratory device will be developed and pilot-tested allowing for dry and saturated rocks measurements of thermal conductivity and thermal diffusivity at pressures and temperatures that are simultaneously raised to values up to 200 MPa and 200°C, respectively. These are the conditions for depths (to approx. 7 km), which are of interest in the use of Earth resources (such as geothermal energy, hydro-carbons, storage of energy or waste). Currently, no laboratory standard procedure exists for this task. Precise knowledge of reliable in-situ thermal rock properties and derived thermal parameters (e.g. heat-flow density) is in-dispensable for understanding the Earth’s subsurface thermal structure and heat budget. Heat mainly drives geody-namic processes (e.g. mantle convection, plate tectonics). Practical implications for the society are arising for exam-ple from the extraction of the Earth’s heat for heating purposes or electricity generation and from the subsurface storage of heat to compensate different seasonal energy demands - techniques that can help to secure and diversify Europe’s energy supply. Moreover, knowledge and methods provided by the ITHERLAB project are paramount for the planning, management and realization of any scientific and industrial subsurface application, which is affected technologically or economically by the subsurface thermal field (temperature and heat budget).

 Publications

year authors and title journal last update
List of publications.
2019 Andrea Förster, Sven Fuchs, Hans-Jürgen Förster, Ben Norden
Unraveling the Impact of P–T-dependent Thermal Conductivity on Crustal Geotherms
published pages: , ISSN: 2169-9356, DOI:
Journal of Geophysical Research - Solid Earth under review 2019-09-23

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ITHERLAB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ITHERLAB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

COR1-TCELL (2019)

Analysis of the role for coronin 1-dependent cell density signalling in T-cell homeostasis

Read More