Opendata, web and dolomites

CasMETICS SIGNED

Combining Single Molecule and Ensemble approaches To Investigate Cas9 Target Search

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 CasMETICS project word cloud

Explore the words cloud of the CasMETICS project. It provides you a very rough idea of what is the project "CasMETICS" about.

discover    vivo    laco1    guide    bsrbi    site    molecules    clock    lapse    single    recognize    bacterial    double    lysis    fluorescence    bind    speed    acids    begin    fluorescent    mysterious    dissociating    fashion    lac    enzyme    atp    plan    linked    right    viral    protection    intense    rnas    confer    synthetic    searching    existence    search    stranded    experiments    cross    bulk    amount    immune    too    binding    critical    biological    directed    hypotheses       cleavage    hour    homologous    purified    inducer    restriction    unravel    electroporated    mechanistic    assay    laci    microscopy    iptg    suggest    individual    melt    flowed    cells    tool    dna    vitro    defend    perform    rna    started    determined    months    chromosomal    biology    functional    molecule    chromatin    cas9    crispr    dye    conundrums    seem    quantified    time    garnered    nucleic    tracking    fluorescently       recombination    version    infections    o1    tagged    dcas9    dsdna    labeled    appropriate   

Project "CasMETICS" data sheet

The following table provides information about the project.

Coordinator
UPPSALA UNIVERSITET 

Organization address
address: VON KRAEMERS ALLE 4
city: UPPSALA
postcode: 751 05
website: www.uu.se

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Sweden [SE]
 Project website http://elflab.icm.uu.se/
 Total cost 173˙857 €
 EC max contribution 173˙857 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-04-01   to  2018-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UPPSALA UNIVERSITET SE (UPPSALA) coordinator 173˙857.00

Map

 Project objective

The CRISPR-Cas9 bacterial immune system has garnered intense interest both as a synthetic biology tool and as a biological system in its own right. Yet the ability of Cas9 to find its guide-RNA-directed binding site in a timely fashion remains mysterious. To find its binding site, the single-stranded guide RNA must recognize the appropriate homologous DNA target within double-stranded chromosomal DNA, without using ATP to melt dsDNA. Moreover, in vitro measurements of Cas9 target search seem to suggest that an individual Cas9 molecule should take on the order of months to discover its target site, far too long to defend against viral infections which can proceed to lysis in less than one hour. To begin to unravel these conundrums, I plan to measure Cas9 target search time in vivo, using both single molecule and bulk approaches. The single molecule assay will use fluorescently tagged dCas9 (a version of Cas9 non-functional for cleavage) targeted against the lac O1 binding site. At t=0 the synthetic inducer IPTG can be flowed in, dissociating LacI from the O1 binding site, and the amount of time needed for dCas9 to bind determined by time-lapse fluorescence microscopy. The bulk version of the assay will exploit the existence of a binding site for the restriction enzyme BsrBI in the lacO1 binding site. As in the single molecule assay, the clock is started by addition of IPTG to growing cells, and the time needed for dCas9 binding is quantified by observed how long is needed for dCas9 to confer protection against BsrBI cleavage of cross-linked and purified chromatin. Finally, I will perform high-speed tracking experiments on searching dCas9 molecules using electroporated fluorescent dye-labeled guide RNAs. These measurements should constrain mechanistic hypotheses about Cas9 target search, and may provide insight into other critical biological processes involving single stranded nucleic acids searching in double stranded nucleic acids, such as homologous recombination.

 Publications

year authors and title journal last update
List of publications.
2017 Daniel Lawson Jones, Prune Leroy, Cecilia Unoson, David Fange, Vladimir Ćurić, Michael J. Lawson, Johan Elf
Kinetics of dCas9 target search in Escherichia coli
published pages: 1420-1424, ISSN: 0036-8075, DOI: 10.1126/science.aah7084
Science 357/6358 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CASMETICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CASMETICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

CYBERSECURITY (2018)

Cyber Security Behaviours

Read More  

RipGEESE (2020)

Identifying the ripples of gene regulation evolution in the evolution of gene sequences to determine when animal nervous systems evolved

Read More  

HSQG (2020)

Higher Spin Quantum Gravity: Lagrangian Formulations for Higher Spin Gravity and Their Applications

Read More