Opendata, web and dolomites

PINBAC SIGNED

Characterising plant interactions with bacteria that promote the uptake of nitrogen and sulphur from organic sources

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 PINBAC project word cloud

Explore the words cloud of the PINBAC project. It provides you a very rough idea of what is the project "PINBAC" about.

contains    routes    transfer    transformations    breeding    whereby    exhibit    scientific    complementary    undertaken    organic    agricultural    receptive    strategically    proposes    species    phenomenon    flux    gaps    genotypes    nutrient    ways    plants    differing    genetic    hosts    metabolic    investigations    isotope    responsible    plant    rhizosphere    neutral    researcher    cultivation    co    microbe    training    decreased    expertise    community    professional    bacterial    crop    sulphur    experiments    microbial    prevents    performing    genes    supporting    abundant    accessions    capacities    nutrition    precise    worst    arabidopsis    microbes    microbiome    incorporate    interactions    varieties    interact    pathogenic    rhizospheric    unclear    host    combinations    sources    maturity    mechanistic    shape    biochemical    undertaking    combines    poor    nitrogen    labelling    select    array    diverse    associations    efficiency    quality    populations    strategies    fertiliser    mutualistic    cultivated   

Project "PINBAC" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAET ZU KOELN 

Organization address
address: ALBERTUS MAGNUS PLATZ
city: KOELN
postcode: 50931
website: www.uni-koeln.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 159˙460 €
 EC max contribution 159˙460 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2015
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2016
 Duration (year-month-day) from 2016-07-01   to  2018-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAET ZU KOELN DE (KOELN) coordinator 159˙460.00

Map

 Project objective

The plant rhizosphere contains an abundant and diverse array of microbes, and plants interact with this microbial community in diverse ways, from mutualistic to neutral to pathogenic. It is proposed that future agricultural systems should strategically incorporate mutualistic plant-microbe associations, whereby high-performing combinations of plant genotypes and microbial populations are co-cultivated to promote improved nutrient use efficiency and decreased fertiliser application. Currently, there is a poor scientific understanding of the precise biochemical transformations and exchanges that occur in mutualistic associations between plants and microbes, and it is also unclear which specific microbial species are the most effective for supporting plant growth and nutrition. There is evidence that plant genotypes exhibit differing capacities to shape their rhizospheric microbiome , but our poor mechanistic understanding of this phenomenon prevents breeding strategies to select crop varieties that will host favourable microbial interactions. Therefore, this project proposes to address these gaps in scientific knowledge, by undertaking co-cultivation experiments that investigate which specific bacterial species are most effective for enhancing plant uptake of nitrogen (N) and sulphur (S) from organic sources, as well as which specific Arabidopsis accessions are the most receptive hosts for these interactions. Next, isotope labelling and metabolic flux studies will be undertaken in the best and worst performing plant-microbe combinations, to define the specific biochemical routes of N & S transfer that are favourable for plant nutrition. Also, genetic investigations will be undertaken to find the key genes responsible for favourable plant-microbe interactions. This project combines the complementary expertise of its participants to deliver high-quality training to the researcher, which will enhance his professional maturity in this strategically important field.

 Publications

year authors and title journal last update
List of publications.
2018 Richard P. Jacoby, Anna Martyn, Stanislav Kopriva
Exometabolomic Profiling of Bacterial Strains as Cultivated Using Arabidopsis Root Extract as the Sole Carbon Source
published pages: 803-813, ISSN: 0894-0282, DOI: 10.1094/MPMI-10-17-0253-R
Molecular Plant-Microbe Interactions 31/8 2019-06-13
2017 Richard Jacoby, Manuela Peukert, Antonella Succurro, Anna Koprivova, Stanislav Kopriva
The Role of Soil Microorganisms in Plant Mineral Nutrition—Current Knowledge and Future Directions
published pages: , ISSN: 1664-462X, DOI: 10.3389/fpls.2017.01617
Frontiers in Plant Science 8 2019-06-13

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "PINBAC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "PINBAC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

Cata-rotors (2019)

Visualising age- and cataract-related changed within cell membranes of human eye lens using molecular rotors

Read More  

LiquidEff (2019)

LiquidEff: Algebraic Foundations for Liquid Effects

Read More