Opendata, web and dolomites

RELIABLE

Wear Resistant Lightweight Aluminium Brakes for Vehicles

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 RELIABLE project word cloud

Explore the words cloud of the RELIABLE project. It provides you a very rough idea of what is the project "RELIABLE" about.

shorter    emissions    fold    cast    suspension    fuel    respectively    ceramic    electric    um    rates    generate    lightweight    tier    hardwearing    market    disc    savings    2023    co2    unsuccessful    mass    discs    oem    industry    thermal    moving    ing    weight    coated    5m    innovation    braking    economy    solution    attempts    surface    oxidation    kg    failed    cracking    profit    iron    unsprung    significantly    reducing    plasma    keronite    substantial    amount    return    vehicle    form    investment    differential    conventional    leads    combined    efforts    largely    vehicles    innovative    urgent    resistant    adopting    overcoming    solutions    inertia    sourcing    automotive    rotational    brake    oems    wear    handling    caused    protective    22    seeking    excessive    suppliers    coatings    brakes    compounded    revenue    resides    actively    turn    distances    ltd    patented    limitations    pioneer    sustainability    considerably    peo    7m    manufacturers    effect    material    lighter    parts    electrolytic    consumption    components    reduce    international    gross    drive    aluminium    acceleration    passenger    expansion   

Project "RELIABLE" data sheet

The following table provides information about the project.

Coordinator
KERONITE INTERNATIONAL LTD 

Organization address
address: 1 TUDOR ROSE COURT 53 HOLLANDS ROAD
city: HAVERHILL SUFFOLK
postcode: CB9 8PJ
website: www.keronite.com

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.keronite.com
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.2.1.5. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced manufacturing and processing)
2. H2020-EU.2.1.3. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies - Advanced materials)
3. H2020-EU.2.3.1. (Mainstreaming SME support, especially through a dedicated instrument)
4. H2020-EU.2.1.2. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies – Nanotechnologies)
 Code Call H2020-SMEINST-1-2016-2017
 Funding Scheme SME-1
 Starting year 2016
 Duration (year-month-day) from 2016-06-01   to  2016-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KERONITE INTERNATIONAL LTD UK (HAVERHILL SUFFOLK) coordinator 50˙000.00

Map

 Project objective

Weight-reduction efforts in the automotive industry have increased significantly in recent years, largely due to efforts to reduce fuel consumption and CO2 emissions. As a result, OEM manufacturers are moving to aluminium based solutions to reduce vehicle weight, improve fuel economy and overall sustainability of the vehicle. OEMs are increasingly out-sourcing their innovation activities and are actively seeking cost-effective lightweight braking solutions from Tier 1 suppliers. A substantial amount of vehicle weight resides in conventional cast-iron brake discs. Brakes form part of the “unsprung mass” (UM) of the vehicle, i.e. not supported by the suspension. The impact of UM weight on fuel consumption is compounded by the effects of rotational inertia and therefore has a much greater effect on fuel consumption per kg than non-moving parts.

Adopting aluminium brake discs would reduce weight considerably and deliver fuel savings, or greater range in the case of electric vehicles. Furthermore, reducing rotational inertia through lighter discs, leads to better drive-handling, improved acceleration, and shorter braking distances. However, the use of aluminium in a cost-effective brake disc solution has failed due to excessive wear of the material. Attempts to provide a hardwearing aluminium surface by coated with a protective ceramic have been unsuccessful due to cracking caused by differential thermal expansion rates.

Keronite International Ltd – a pioneer in lightweight aluminium braking components and patented Plasma Electrolytic Oxidation (PEO) coatings - has developed RELIABLE, a wear-resistant lightweight aluminium brake disc for use in mass-market passenger vehicles. By overcoming the limitations of existing ceramic coatings, RELIABLE will deliver an innovative solution to an urgent market need. In turn, Keronite will generate combined revenue and gross profit of €50.7m and €22.5m respectively by 2023, resulting in a 5-fold return on investment.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "RELIABLE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "RELIABLE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.2.1.5.;H2020-EU.2.1.3.;H2020-EU.2.3.1.;H2020-EU.2.1.2.)

SUPPLEPRINT (2018)

Super Productive Line Printing Inkjet

Read More  

Gri3D (2018)

The industrialization and market entry of a novel bioengineered hydrogel grid to standardize stem cell cultures for precision medicine.

Read More  

HIL PT System (2017)

Revolutionary, cost effective, spatially efficient, proton therapy system for cancer treatment.

Read More