Opendata, web and dolomites

FlexNanoFlow SIGNED

Ultra-flexible nanostructures in flow: controlling folding, fracture and orientation in large-scale liquid processing of 2D nanomaterials

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 FlexNanoFlow project word cloud

Explore the words cloud of the FlexNanoFlow project. It provides you a very rough idea of what is the project "FlexNanoFlow" about.

constructs    ultra    space    linear    single    resolution    owing    hydrodynamic    small    uncovering    semiconducting    hindering    atomistic    poorly    simulation    thin    agitation    framework    coatings    hold    processed    guide    sheets    desired    thanks    simulations    flow    conductivity    crumpled    scales    shear    explore    liquid    break    mechanical    capture    fold    conceptually    fluid    nanomaterials    storage    align    morphology    mechanics    experiments    true    nanoscale    progress    extend    materials    tend    continuum    inadequate    theoretical    strength    macroscopic    principles    nanoscopic    promise    computations    scaled    capillary    unusual    immense    dynamics    flows    3d    objects    physical    flexible    strategies    extraordinary    microhydrodynamics    techniques    ones    load    nanocomposites    2d    treatments    forces    profound    size    particles    orientation    unprecedented    governing    fracture    conductive    details    energy    difficult    extremely    intrinsic    unsteady    oriented    environments    shearing    analysed    lateral    technological    market    solid    issue    multiple    structure    deformation    allowed   

Project "FlexNanoFlow" data sheet

The following table provides information about the project.

Coordinator
TECHNISCHE UNIVERSITEIT DELFT 

Organization address
address: STEVINWEG 1
city: DELFT
postcode: 2628 CN
website: www.tudelft.nl

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Netherlands [NL]
 Total cost 1˙453˙779 €
 EC max contribution 1˙453˙779 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-04-01   to  2022-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    TECHNISCHE UNIVERSITEIT DELFT NL (DELFT) coordinator 805˙780.00
2    QUEEN MARY UNIVERSITY OF LONDON UK (LONDON) participant 647˙998.00

Map

 Project objective

2D nanomaterials hold immense technological promise thanks to extraordinary intrinsic properties such as ultra-high conductivity, strength and unusual semiconducting properties. Our understanding of how these extremely thin and flexible objects are processed in flow is however inadequate, and this is hindering progress towards true market applications. When processed in liquid environments to make nanocomposites, conductive coatings and energy storage devices, 2D nanomaterials tend to fold and break owing to strong shear forces produced by the mechanical agitation of the liquid. This can lead to poorly-oriented, crumpled sheets of small lateral size and therefore of low intrinsic value. Orientation is also a major issue, as ultra-flexible materials are difficult to extend and align. In this project, I will develop nanoscale fluid-structure simulation techniques to capture with unprecedented resolution the unsteady deformation and fracture dynamics of single and multiple sheets in response to the complex hydrodynamic load produced by shearing flows. In addition, I will demonstrate via simulations new strategies to exploit capillary forces to structure 2D nanomaterials into 3D constructs of desired morphology. To guide the simulations and explore a wider parameter space than allowed in computations, I will develop conceptually new experiments on “scaled-up 2D nanomaterials”, macroscopic particles having the same dynamics as the nanoscopic ones. The simulations will include continuum treatments and atomistic details, and will be analysed within the theoretical framework of microhydrodynamics and non-linear solid mechanics. By uncovering the physical principles governing flow-induced deformation of 2D nanomaterials, this project will have a profound impact on our ability to produce and process 2D nanomaterials on large scales.

 Publications

year authors and title journal last update
List of publications.
2020 Simon Gravelle, Catherine Kamal, Lorenzo Botto
Liquid exfoliation of multilayer graphene in sheared solvents: A molecular dynamics investigation
published pages: 104701, ISSN: 0021-9606, DOI: 10.1063/1.5141515
The Journal of Chemical Physics 152/10 2020-04-01
2018 Bethany J. Newton, Rizwaan Mohammed, Gary B. Davies, Lorenzo Botto, D. Martin A. Buzza
Capillary Interaction and Self-Assembly of Tilted Magnetic Ellipsoidal Particles at Liquid Interfaces
published pages: 14962-14972, ISSN: 2470-1343, DOI: 10.1021/acsomega.8b01818
ACS Omega 3/11 2020-02-12
2019 G. Salussolia
A numerical study of the flow dynamics of graphene sheets based on continuum simulations
published pages: , ISSN: , DOI:
2020-02-12
2018 Gannian Zhang, Miguel A. Quetzeri-Santiago, Corinne A. Stone, Lorenzo Botto, J. Rafael Castrejón-Pita
Droplet impact dynamics on textiles
published pages: 8182-8190, ISSN: 1744-683X, DOI: 10.1039/C8SM01082J
Soft Matter 14/40 2020-02-12
2018 Bethany J. Newton, Rizwaan Mohammed, Gary B. Davies, Lorenzo Botto, D. Martin A. Buzza
Capillary Interaction and Self-Assembly of Tilted Magnetic Ellipsoidal Particles at Liquid Interfaces
published pages: 14962-14972, ISSN: 2470-1343, DOI: 10.1021/acsomega.8b01818
ACS Omega 3/11 2020-02-12
2018 Arturo Mendoza-Meinhardt, Lorenzo Botto, Alvaro Mata
A fluidic device for the controlled formation and real-time monitoring of soft membranes self-assembled at liquid interfaces
published pages: , ISSN: 2045-2322, DOI: 10.1038/s41598-018-20998-7
Scientific Reports 8/1 2020-02-12

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FLEXNANOFLOW" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FLEXNANOFLOW" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

HyperBio (2019)

Vis-NIR Hyperspectral imaging for biomaterial quality control

Read More  

SLAMseq (2019)

SLAMseq: Temporal resolution in gene expression profiling across multiple platforms

Read More  

ORGANITRA (2019)

Transport of phosphorylated compounds across lipid bilayers by supramolecular receptors

Read More