Explore the words cloud of the SynchroSelf project. It provides you a very rough idea of what is the project "SynchroSelf" about.
The following table provides information about the project.
Coordinator |
QUEEN MARY UNIVERSITY OF LONDON
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Total cost | 195˙454 € |
EC max contribution | 195˙454 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2015 |
Funding Scheme | MSCA-IF-EF-CAR |
Starting year | 2016 |
Duration (year-month-day) | from 2016-04-01 to 0000-00-00 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | QUEEN MARY UNIVERSITY OF LONDON | UK (LONDON) | coordinator | 195˙454.00 |
Irreversible tissue loss is a common feature in a large spectrum of health conditions (e.g. aging, trauma, cancer, degenerative diseases, ischemia, etc), placing huge burdens in patient relatives and health care systems. Therapies aiming to restore tissue function will have a great impact in the health and quality of life of millions of people worldwide.
Regenerative medicine is an interdisciplinary endeavour to create functional tissues and organs, where cell biology, biochemistry, chemistry and material sciences are central components to address human tissues complexity. The approach comprises the use of biomaterials that temporarily substitute the extracellular matrix (ECM). However, current engineered biomaterials have not fully matched the diverse functionality of native tissues. Thus, fundamental research in biomaterials for regenerative medicine has great potential to provide smart solutions to current bottlenecks in this scientific area.
In this project, biomaterials based on peptide self-assembly will be designed to take advantage of reversible supramolecular interactions, in order to create self-healing ECM substitutes. The dynamic nature of these materials will be addressed systematically in an attempt to copycat ECM turnover. So far, efforts from the materials scientific community have been mainly focused on controlling spatial and geometrical features. Perhaps it is time to start addressing consistently time variable controls in biomaterials design, and to pave the way to fully synchronise the biology and man-made materials’ “watches”. We expect that SynchroSelf will generate a new class of dynamic biomaterials that will enable scientists to study wound healing processes in vitro with unprecedented level of complexity and experimental control.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SYNCHROSELF" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "SYNCHROSELF" are provided by the European Opendata Portal: CORDIS opendata.
Realistic Assessment of Historical Masonry Bridges under Extreme Environmental Actions
Read MoreHow other minds are represented in the human brain: Neural computations underlying Theory of Mind
Read MoreIdentification and characterization of a novel damage sensor for cytoskeletal proteins in Drosophila
Read More