Opendata, web and dolomites

FiTTeR

Developing a Fibrosis Targeting and Tissue Reparative (FiTTeR) Therapy for the Infarcted Myocardium via an Injectable Functionalized Extracellular Matrix Hydrogel

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "FiTTeR" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Project website http://www.stevensgroup.org/index.php/people/cat/researchers
 Total cost 195˙454 €
 EC max contribution 195˙454 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-08-21   to  2019-08-20

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 195˙454.00

Map

 Project objective

As a Marie SkÅ‚odowska-Curie Fellow, I will develop, characterize, and determine the efficacy of a biomaterial platform to target pathologic fibrosis and promote tissue repair following myocardial infarction (MI). I have an ideal background and will perform well in this project based on my expertise in extracellular matrix (ECM) derived biomaterials, characterizing the immune response to biomaterials, and evaluating in vivo outcomes. The proposed system will consist of a protein fragment tethered to an injectable hydrogel. The hydrogel carrier will be composed of ECM, which has been shown to facilitate tissue repair processes by local modulation of immune cell phenotype . The cryptic protein fragment, recently isolated and recombinantly produced by the Stevens Group , has gained attention for its ability to regulate the onset of fibrosis by interfacing with cells to abrogate the release of matrix metalloproteinases (MMPs). No therapies currently exist to prevent or mitigate fibrosis. Developing a sophisticated delivery system for a cryptic protein fragment will enable the broad potential of targeting pathologic fibrosis to be realized. This system will be advantageous in simultaneously providing localized delivery, combined immunomodulatory and regulatory properties of the ECM and recombinant protein fragment, and sustained release of the protein fragment during degradation of the ECM hydrogel. The combination of my expertise (in ECM hydrogels, characterizing the host response to biomaterials, and translating technologies) and Prof Molly Stevens’s supervision and world-class interdisciplinary biomaterials-focused group, the 2014 Research Group of the Year (European Life Science Awards), at Imperial College London (ICL), together make this project ideally suited for success.

 Publications

year authors and title journal last update
List of publications.
2018 Gregor Fuhrmann, Rona Chandrawati, Paresh A. Parmar, Timothy J. Keane, Stephanie A. Maynard, Sergio Bertazzo, Molly M. Stevens
Engineering Extracellular Vesicles with the Tools of Enzyme Prodrug Therapy
published pages: 1706616, ISSN: 0935-9648, DOI: 10.1002/adma.201706616
Advanced Materials 30/15 2020-03-06

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FITTER" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FITTER" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

CINEMA (2019)

Creating an Infrastructure for the Numerical Exploration of Metallurgical Alloys

Read More