Opendata, web and dolomites

VIVIR SIGNED

VIsual representations of VIew Relations to support effective data analysis on large and high-resolution displays

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "VIVIR" data sheet

The following table provides information about the project.

Coordinator
KOBENHAVNS UNIVERSITET 

Organization address
address: NORREGADE 10
city: KOBENHAVN
postcode: 1165
website: www.ku.dk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Denmark [DK]
 Total cost 263˙719 €
 EC max contribution 263˙719 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-GF
 Starting year 2017
 Duration (year-month-day) from 2017-10-01   to  2021-03-27

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    KOBENHAVNS UNIVERSITET DK (KOBENHAVN) coordinator 263˙719.00
2    University of Calgary CA (CALGARY ALBERTA) partner 0.00

Map

 Project objective

In VIVIR, I will conduct state-of-the-art research on supporting collaborative face-to-face data analysis. This is motivated by the increasing need for interdisciplinary teams to collaborate on understanding and analysing data. Additionally, as the scale and complexity of data increase, so does the demand for data-based insights and decision-making. My approach is to empower people who are working with large and complex data, by letting them lay out as many visualization views (in the following, denoted views) as necessary on large displays, and creating specialized meta-visualizations to show relations between these views. These meta-visualizations will allow team workers to be aware of each other’s work and the changing view- and data-relationships as they work. While the potential of view meta-visualizations has been acknowledged , there are currently only a few frequently used and considered essential examples of such meta-visualizations. These might show that data in two views are compared in a third view, or that a view shows a subset of the data shown in another view. Most importantly, there has been no thorough exploration into the power and potential of meta-visualization support for data-driven decision-making. To understand the potential impact of meta-visualizations on data analysis, we need to take a structured approach, to formalize these possibilities, which will improve our abilities to support knowledge worker teams as they face the challenges of analyzing increasingly complex data. In brief, data can be difficult to understand. Creating visualizations of data lets people see their data more clearly. As data size and complexity increases, more views are needed to reveal the information hidden in data. Large displays might be useful to solve this. However, a new problem is emerging – how to be aware of the data relationships, and keep an overview of analysis provenance , findings, and decisions between these multiple views. VIVIR tackles this issue.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VIVIR" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VIVIR" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More  

Migration Ethics (2019)

Migration Ethics

Read More  

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More