Opendata, web and dolomites

NanoVoltSens

Voltage-sensing nanorods for super-resolution voltage imaging in neurons

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NanoVoltSens project word cloud

Explore the words cloud of the NanoVoltSens project. It provides you a very rough idea of what is the project "NanoVoltSens" about.

brightness    affords    shifted    exceptional    advantages    single    ibens    emission    membrane    sites    branch    tools    excellent    applicable    fluctuations    particle    signal    last    paris    infrared    spatial    designed    brain    validate    optical    record    times    significantly    spikes    morphology    neurobiology    vsnrs    dynamics    neuronal    semi    insert    spines    laboratory    accomplished    imaging    individual    optically    function    sensing    detection    conductor    potentials    triller    characterization    fast    calcium    dendritic    certain    ones    neurons    ludwig    molecular    calibrate    ratiometric    nanorods    lagging    ns    anastasia    shift    rods    innovative    resolution    advantage    simultaneously    decade    voltage    sensor    spectral    view    performance    action    red    targetable    multiple    data    invasively    spine    preliminary    sensitivity    fundamentally    initial    temporal    near    self    extensive    antoine    sensors    integration    dr    points    electrical   

Project "NanoVoltSens" data sheet

The following table provides information about the project.

Coordinator
INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE 

Organization address
address: RUE DE TOLBIAC 101
city: PARIS
postcode: 75654
website: www.inserm.fr

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Project website http://weisslab.ph.biu.ac.il/
 Total cost 185˙076 €
 EC max contribution 185˙076 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2016
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2017
 Duration (year-month-day) from 2017-05-01   to  2019-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUT NATIONAL DE LA SANTE ET DE LA RECHERCHE MEDICALE FR (PARIS) coordinator 185˙076.00

Map

 Project objective

In the last decade, the rapidly developing optical imaging field has significantly improved our understanding of information processing in the brain. Although a number of promising tools have been designed, sensors of membrane potential are lagging behind. In this project we aim to characterize an innovative voltage sensor for neurons that is fundamentally different from the existing ones. Our sensor is based on targetable voltage-sensing semi-conductor nanorods (vsNRs) that self-insert into the neuronal membrane. The rods optically and non-invasively record action potentials at the single particle level, at multiple sites, and across a large field-of-view. Such vsNRs offer unique advantages, including: (1) large voltage sensitivity, (2) ratiometric imaging based on a large spectral shift as function of voltage, (3) very fast response times in the range of ns, (4) very high brightness that affords single-particle detection, and (5) excellent performance in the near-infrared spectral range. The goal of this project is to validate, calibrate, and use vsNRs in neurons, focusing on dendritic spines and dendritic voltage spikes. After initial characterization of vsNRs in neurons, we will take advantage of the exceptional spatial and temporal resolution provided by vsNRs in order to access electrical properties of individual dendritic spines, as well as to make use of the red-shifted emission of vsNRs in order to record simultaneously membrane potential and calcium fluctuations at dendritic branch points. The project is to be accomplished in the laboratory of Dr. Antoine Triller at the IBENS, Paris by Dr. Anastasia Ludwig, who has extensive experience in molecular neurobiology, including analysis of dendritic spine morphology and dynamics. Based on our preliminary data, we are certain to be able to provide within two years a viable and user-friendly voltage-imaging technology that will be widely applicable for the study of signal integration in the brain.

 Publications

year authors and title journal last update
List of publications.
2017 Omri Bar-Elli, Dan Steinitz, Gaoling Yang, Ron Tenne, Anastasia Ludwig, Yung Kuo, Antoine Triller, Shimon Weiss, Dan Oron
Rapid Voltage Sensing with Single Nanorods via the Quantum Confined Stark Effect
published pages: 2860-2867, ISSN: 2330-4022, DOI: 10.1021/acsphotonics.8b00206
ACS Photonics 5/7 2019-09-25

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOVOLTSENS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOVOLTSENS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

TheaTheor (2018)

Theorizing the Production of 'Comedia Nueva': The Process of Play Configuration in Spanish Golden Age Theater

Read More  

DNANanoProbes (2019)

Design of light-harvesting DNA-nanoprobes with ratiometric signal amplification for fluorescence imaging of live cells.

Read More  

PmNC (2019)

Policy-making of early nature conservation. The Netherlands and the United Kingdom compared, 1930-1960

Read More