Explore the words cloud of the M-DrivE project. It provides you a very rough idea of what is the project "M-DrivE" about.
The following table provides information about the project.
Coordinator |
ACIES BIO BIOTEHNOLOSKE RAZISKAVE IN RAZVOJ DOO
Organization address contact info |
Coordinator Country | Slovenia [SI] |
Total cost | 157˙287 € |
EC max contribution | 157˙287 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2016 |
Funding Scheme | MSCA-IF-EF-SE |
Starting year | 2018 |
Duration (year-month-day) | from 2018-05-01 to 2020-04-30 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | ACIES BIO BIOTEHNOLOSKE RAZISKAVE IN RAZVOJ DOO | SI (LJUBLJANA) | coordinator | 157˙287.00 |
Post-translational chemical modifications to histone proteins – the storage units of DNA – influence gene expression electrostatically and through specific protein-protein interactions, the study of which is known as epigenetics. Although many enzymes have been identified which add, remove or recognise these modifications, the implication of metabolism in the induction of epigenetic states is a recent development – particularly highlighting acetyl coenzyme A (CoA) as the sole donor for acetylation. Due to the lack of appropriate biochemical tools, this emerging field has not yet been exploited, however Acies Bio’s leading work on the efficient synthesis of 4’ phosphopantetheine (4-PPT), a natural precursor of the prolific substrate CoA, places us in a unique position to realise the novel approach of metabolically inducing epigenetic modifications. In progress towards therapeutic use bypassing faulty metabolism in a rare genetic disorder, we have shown that 4-PPT is cell permeable, serum-stable, tolerated at high doses without side-effects, and can also upregulate histone acetylation. This presents a previously unexplored route to develop 4-PPT as a novel vehicle for the delivery of diverse intracellular acyl-CoA species, and subsequent histone modification. Taking advantage of the interplay between metabolic and epigenetic states, and the complementarity of backgrounds that Acies Bio and Dr Sekirnik can provide through an international partnership combining expertise in both fields, our proposed work would illuminate recently characterised histone acylations. By synthesising novel 4-PPT derivatives, and demonstrating their activity on a cellular and model organism level, we will develop new tools to enable rapid enrichment of rare endogenous modifications to probe their function. This would form the first demonstration of use of native enzyme substrates to affect epigenetic states, affording new European research opportunities in both metabolomics and epigenetics.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "M-DRIVE" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "M-DRIVE" are provided by the European Opendata Portal: CORDIS opendata.