Opendata, web and dolomites

GenEdiDS SIGNED

Rescuing Cognitive Deficits in Neurodevelopmental Disorders by Gene Editing in Brain Development: the Case of Down Syndrome

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GenEdiDS project word cloud

Explore the words cloud of the GenEdiDS project. It provides you a very rough idea of what is the project "GenEdiDS" about.

effect    drug    diagnosed    act    avoiding    neuronal    caused    share    mostly    nd    possibly    treatments    brain    developmental    editing    models    involvement    manipulation    options    intellectual    deficits    performed    technological    light    originate    animal    therapy    cas9    downstream    disability    manipulations    sequelae    extra    pharmacological    adults    chromosome    neurodevelopmental    etiologies    syndrome    positive    postnatally    disorders    actions    utero    networks    lasting    crispr    impairment    noxious    view    translational    free    gene    limited    stages    embryonic    21    intervention    ethical    converging    safer    progenitors    preclinical    defective    educational    indicating    viral    prenatally    cells    triplicated    cognitive    genetic    ds    later    genes    germline    treatment    cornerstone    shown    recover    abnormalities    nevertheless    chronic    parallel    mice    minimize    life    psychiatric    rescue    of    genetically   

Project "GenEdiDS" data sheet

The following table provides information about the project.

Coordinator
FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA 

Organization address
address: VIA MOREGO 30
city: GENOVA
postcode: 16163
website: www.iit.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 2˙000˙000 €
 EC max contribution 2˙000˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2016-COG
 Funding Scheme ERC-COG
 Starting year 2017
 Duration (year-month-day) from 2017-10-01   to  2022-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FONDAZIONE ISTITUTO ITALIANO DI TECNOLOGIA IT (GENOVA) coordinator 2˙000˙000.00

Map

 Project objective

Neurodevelopmental disorders (ND) are chronic psychiatric conditions with different etiologies, but most share a strong genetic component, defective brain development, and cognitive impairment. Currently, treatment options are very limited, and early educational intervention is the cornerstone for the management of cognitive impairment in most ND, indicating the positive effect of early actions during brain development. Among ND, Down syndrome (DS) is caused by the presence of an extra chromosome 21, and it represents the leading cause of genetically-defined intellectual disability. Different pharmacological treatments targeting one of the many pathways downstream of the triplicated genes have been shown to rescue cognitive impairment in DS animal models. Nevertheless, most of these preclinical studies have been performed postnatally and often in adults, possibly because of concerns of unwanted drug side effects that may have long-lasting noxious sequelae on a developing brain at embryonic stages. On the other hand, viral (but also non-viral) gene therapy approaches in animal models of ND have been mostly neglected because of technical and ethical issues, when considered in the light of future translational applications. Yet, DS is mostly diagnosed prenatally, when many of its brain developmental abnormalities originate. Here, we will investigate whether in utero manipulation of specific and possibly converging gene networks in neuronal progenitors of DS mice by CRISPR-Cas9 gene-editing technology, may recover brain development and cognitive deficits later in life. Specifically targeting neuronal progenitors will allow us to act at early stages of brain development, while avoiding the involvement of genetic editing of germline cells and all related ethical issues. In parallel, we will also develop safer (viral-free) technological approaches for genetic manipulations in utero to minimize technical issues in the view of potential future translational applications.

 Publications

year authors and title journal last update
List of publications.
2018 Andrzej W. Cwetsch, Bruno Pinto, Annalisa Savardi, Laura Cancedda
In vivo methods for acute modulation of gene expression in the central nervous system
published pages: 69-85, ISSN: 0301-0082, DOI: 10.1016/j.pneurobio.2018.04.008
Progress in Neurobiology 168 2019-06-06
2019 Shovan Naskar, Roberto Narducci, Edoardo Balzani, Andrzej W. Cwetsch, Valter Tucci, Laura Cancedda
The development of synaptic transmission is time-locked to early social behaviors in rats
published pages: , ISSN: 2041-1723, DOI: 10.1038/s41467-019-09156-3
Nature Communications 10/1 2019-06-06
2018 Joanna Szczurkowska, Francesca Pischedda, Bruno Pinto, Francesca Managò, Carola A Haas, Maria Summa, Rosalia Bertorelli, Francesco Papaleo, Michael K Schäfer, Giovanni Piccoli, Laura Cancedda
NEGR1 and FGFR2 cooperatively regulate cortical development and core behaviours related to autism disorders in mice
published pages: , ISSN: 0006-8950, DOI: 10.1093/brain/awy190
Brain 2019-06-06

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GENEDIDS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GENEDIDS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

REPLAY_DMN (2019)

A theory of global memory systems

Read More  

E-DIRECT (2020)

Evolution of Direct Reciprocity in Complex Environments

Read More  

HYDROGEN (2019)

HighlY performing proton exchange membrane water electrolysers with reinforceD membRanes fOr efficient hydrogen GENeration

Read More