Opendata, web and dolomites

Daphne SIGNED

Circuits of Visual Attention

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "Daphne" data sheet

The following table provides information about the project.

Coordinator
INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA 

Organization address
address: Am Campus 1
city: KLOSTERNEUBURG
postcode: 3400
website: www.ist.ac.at

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Austria [AT]
 Total cost 1˙446˙542 €
 EC max contribution 1˙446˙542 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2017
 Duration (year-month-day) from 2017-12-01   to  2022-11-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    INSTITUTE OF SCIENCE AND TECHNOLOGY AUSTRIA AT (KLOSTERNEUBURG) coordinator 1˙446˙542.00

Map

 Project objective

The evolutionary arms race has optimized and shaped the way animals attend to relevant sensory stimuli in an ever-changing environment. This is a complex task, because the vast majority of sensory experiences are not relevant. In humans, attentional disorders are a serious public health concern because of its high prevalence, but its causes are mostly unknown. In this proposal, I will explore the neuronal mechanisms used by the nervous system to attend visual cues to enable appropriate behaviors. We will combine cutting edge imaging techniques, optogenetic interventions, behavioral read outs and targeted connectomics to study the neuronal transformations of the mouse Superior Colliculus (SC), an evolutionary conserved midbrain area known to process sensorimotor transformations and to be involved in the allocation of attention. First, this work will reveal a detailed description of visual representation in the SC, focusing on understanding how defined retinal information-streams, like motion and color, contribute to these properties. Second, we will characterize sensorimotor transformations instructed by the SC. The combination of the previous two objectives will determine mechanisms of visual saliency and sensory driven attention (“bottom-up” attention). Finally, we will explore the neuronal mechanisms of attention by studying the modulatory effect of higher brain areas (“top-down” attention) on sensory transformation and multisensory integration in the SC. Taken together, this proposal aims to understand principles underlying sensorimotor transformation and build a framework to study attention in health and disease.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "DAPHNE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "DAPHNE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More  

MATCH (2020)

Discovering a novel allergen immunotherapy in house dust mite allergy tolerance research

Read More  

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More