Opendata, web and dolomites

NANOPHLOW SIGNED

TOWARDS NOVEL NANO-SCALE TECHNOLOGIES BASED ON PHORETIC FLOW EFFECTS

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NANOPHLOW project word cloud

Explore the words cloud of the NANOPHLOW project. It provides you a very rough idea of what is the project "NANOPHLOW" about.

science    difficult    forces    risk    share    pilot    bulk    filtration    interdisciplinary    fluid    surface    gradients    channels    industrial    poorly    barriers    improvement    energy    flows    external    inside    takes    nano    facilitator    turbines    ultra    proofs    estimate    most    translate    electric    macroscopic    flow    equivalent    quality    salinity    scope    lay    changer    sub    team    underlying    area    mitigates    plants    nature    yield    intrinsic    breakthroughs    fundamental    implications    modern    place    gradient    blue    limitations    drive    basis    transport    sized    laws    game    qualitatively    gravity    powers    fluids    sensitive    micron    protein    exploited    technological    efficiency    pores    surpass    basic    technologies    concentration    pumps    diverse    harvesting    transfer    engage    full    thermal    osmotic    harnessed    break    subsequently    envisage    entire    physical    phoretic    hydro    huge    desalination    extraction    truly    barely    separation    pressure    economic   

Project "NANOPHLOW" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT DE BARCELONA 

Organization address
address: GRAN VIA DE LES CORTS CATALANES 585
city: BARCELONA
postcode: 8007
website: http://www.ub.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Project website http://www.nanophlow.eu/
 Total cost 3˙299˙670 €
 EC max contribution 3˙299˙670 € (100%)
 Programme 1. H2020-EU.1.2.1. (FET Open)
 Code Call H2020-FETOPEN-1-2016-2017
 Funding Scheme RIA
 Starting year 2018
 Duration (year-month-day) from 2018-02-01   to  2021-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT DE BARCELONA ES (BARCELONA) coordinator 573˙750.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 891˙250.00
3    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) participant 838˙750.00
4    FLUIDIC ANALYTICS LIMITED UK (CAMBRIDGE) participant 349˙670.00
5    UNIVERSITEIT UTRECHT NL (UTRECHT) participant 338˙750.00
6    SWEETCH ENERGY FR (LORIENT) participant 307˙500.00

Map

 Project objective

Most devices that transport bulk fluids make use of pressure gradients (`pumps’) or external forces (e.g. gravity powers hydro-electric turbines). Increasingly, modern technology is addressing problems where fluid transport takes place in sub-micron sized channels, or in pores. The physical laws of transport in such channels are qualitatively different from those that determine bulk flow; they are poorly understood and, importantly, barely exploited. The aim of the proposed research is to lay the basis for an entire novel technology where thermal gradients and concentration gradients along nano-sized channels are harnessed to drive devices that have no equivalent on the macroscopic scale. Such gradient-driven surface flows offer a huge scope for fundamental advances with very significant technological implications. We envisage breakthroughs in the area of energy extraction from salinity gradients (`blue energy’), ultra-filtration and desalination, and the development of novel, highly sensitive protein-separation devices. This new approach will surpass the intrinsic limitations of current technologies. The expected huge improvement in efficiency will be a game changer and will break the current barriers in the development of technologies such as e.g osmotic energy harvesting.

All the applications share the same underlying science and can therefore be addressed by the proposal team. We will engage with industrial partners inside the team and with new partners that we will approach through our Knowledge Transfer Facilitator, to translate basic science into proofs-of-principle, pilot plants and, subsequently, full scale applications. The potential economic impact of phoretic technologies is difficult to over-estimate: the research is truly high-risk, high-yield. By targeting two diverse applications, we exploit the generic nature of the underlying science. The quality and interdisciplinary nature of the team mitigates the risk of failure.

 Deliverables

List of deliverables.
Project website and logo Websites, patent fillings, videos etc. 2020-03-18 18:53:15
Data management plan Open Research Data Pilot 2020-03-18 18:53:15
Appointment of research and admin staff Documents, reports 2020-03-18 18:53:15
LB code for phoretic flows Other 2020-03-18 18:53:15

Take a look to the deliverables list in detail:  detailed list of NANOPHLOW deliverables.

 Publications

year authors and title journal last update
List of publications.
2019 Marbach and L. Bocquet
Osmosis, from molecular insights to large-scale applications
published pages: , ISSN: 0306-0012, DOI:
submitted to Chem. Soc. Rev 2020-03-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOPHLOW" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOPHLOW" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.2.1.)

ATEMPGRAD (2019)

Analysing Temperature Effects with a Mobile and Precise Gradient Device

Read More  

CLASSY (2019)

Cell-Like ‘Molecular Assembly Lines’ of Programmable Reaction Sequences as Game-Changers in Chemical Synthesis

Read More  

CANCER SCAN (2019)

A Body Scan for Cancer Detection using Quantum Technology

Read More