Opendata, web and dolomites

NANOPHLOW SIGNED

TOWARDS NOVEL NANO-SCALE TECHNOLOGIES BASED ON PHORETIC FLOW EFFECTS

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 NANOPHLOW project word cloud

Explore the words cloud of the NANOPHLOW project. It provides you a very rough idea of what is the project "NANOPHLOW" about.

energy    physical    changer    subsequently    gravity    science    plants    underlying    pumps    technologies    bulk    gradient    protein    mitigates    scope    truly    drive    envisage    surface    macroscopic    entire    ultra    fundamental    place    nature    laws    phoretic    barely    filtration    separation    industrial    sub    flows    yield    huge    powers    micron    salinity    interdisciplinary    transport    fluids    blue    gradients    flow    team    equivalent    facilitator    break    area    fluid    external    intrinsic    osmotic    barriers    translate    full    harnessed    desalination    inside    diverse    takes    efficiency    modern    thermal    extraction    turbines    sensitive    basic    qualitatively    pressure    electric    implications    surpass    harvesting    technological    engage    economic    pilot    channels    breakthroughs    improvement    pores    basis    most    risk    proofs    exploited    estimate    hydro    forces    sized    quality    poorly    share    game    difficult    transfer    limitations    lay    nano    concentration   

Project "NANOPHLOW" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT DE BARCELONA 

Organization address
address: GRAN VIA DE LES CORTS CATALANES 585
city: BARCELONA
postcode: 8007
website: http://www.ub.es

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Project website http://www.nanophlow.eu/
 Total cost 3˙299˙670 €
 EC max contribution 3˙299˙670 € (100%)
 Programme 1. H2020-EU.1.2.1. (FET Open)
 Code Call H2020-FETOPEN-1-2016-2017
 Funding Scheme RIA
 Starting year 2018
 Duration (year-month-day) from 2018-02-01   to  2021-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT DE BARCELONA ES (BARCELONA) coordinator 573˙750.00
2    CENTRE NATIONAL DE LA RECHERCHE SCIENTIFIQUE CNRS FR (PARIS) participant 891˙250.00
3    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) participant 838˙750.00
4    FLUIDIC ANALYTICS LIMITED UK (CAMBRIDGE) participant 349˙670.00
5    UNIVERSITEIT UTRECHT NL (UTRECHT) participant 338˙750.00
6    SWEETCH ENERGY FR (LORIENT) participant 307˙500.00

Map

 Project objective

Most devices that transport bulk fluids make use of pressure gradients (`pumps’) or external forces (e.g. gravity powers hydro-electric turbines). Increasingly, modern technology is addressing problems where fluid transport takes place in sub-micron sized channels, or in pores. The physical laws of transport in such channels are qualitatively different from those that determine bulk flow; they are poorly understood and, importantly, barely exploited. The aim of the proposed research is to lay the basis for an entire novel technology where thermal gradients and concentration gradients along nano-sized channels are harnessed to drive devices that have no equivalent on the macroscopic scale. Such gradient-driven surface flows offer a huge scope for fundamental advances with very significant technological implications. We envisage breakthroughs in the area of energy extraction from salinity gradients (`blue energy’), ultra-filtration and desalination, and the development of novel, highly sensitive protein-separation devices. This new approach will surpass the intrinsic limitations of current technologies. The expected huge improvement in efficiency will be a game changer and will break the current barriers in the development of technologies such as e.g osmotic energy harvesting.

All the applications share the same underlying science and can therefore be addressed by the proposal team. We will engage with industrial partners inside the team and with new partners that we will approach through our Knowledge Transfer Facilitator, to translate basic science into proofs-of-principle, pilot plants and, subsequently, full scale applications. The potential economic impact of phoretic technologies is difficult to over-estimate: the research is truly high-risk, high-yield. By targeting two diverse applications, we exploit the generic nature of the underlying science. The quality and interdisciplinary nature of the team mitigates the risk of failure.

 Deliverables

List of deliverables.
Project website and logo Websites, patent fillings, videos etc. 2020-03-18 18:53:15
Data management plan Open Research Data Pilot 2020-03-18 18:53:15
Appointment of research and admin staff Documents, reports 2020-03-18 18:53:15
LB code for phoretic flows Other 2020-03-18 18:53:15

Take a look to the deliverables list in detail:  detailed list of NANOPHLOW deliverables.

 Publications

year authors and title journal last update
List of publications.
2019 Marbach and L. Bocquet
Osmosis, from molecular insights to large-scale applications
published pages: , ISSN: 0306-0012, DOI:
submitted to Chem. Soc. Rev 2020-03-18

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NANOPHLOW" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NANOPHLOW" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.2.1.)

ATEMPGRAD (2019)

Analysing Temperature Effects with a Mobile and Precise Gradient Device

Read More  

WiPLASH (2019)

Architecting More Than Moore – Wireless Plasticity for Heterogeneous Massive Computer Architectures

Read More  

ALICE (2019)

Active Living Infrastructure: Controlled Environment

Read More