Opendata, web and dolomites

COLD SIGNED

Climate Sensitivity of Glacial Landscape Dynamics

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "COLD" data sheet

The following table provides information about the project.

Coordinator
HELMHOLTZ ZENTRUM POTSDAM DEUTSCHESGEOFORSCHUNGSZENTRUM GFZ 

Organization address
address: TELEGRAFENBERG 17
city: POTSDAM
postcode: 14473
website: www.gfz-potsdam.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙499˙308 €
 EC max contribution 1˙499˙308 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-01-01   to  2022-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    HELMHOLTZ ZENTRUM POTSDAM DEUTSCHESGEOFORSCHUNGSZENTRUM GFZ DE (POTSDAM) coordinator 1˙499˙308.00

Map

 Project objective

How do erosion rates in glacial landscapes vary with climate change and how do such changes affect the dynamics of mountain glaciers? Providing quantitative constraints towards this question is the main objective of COLD. These constraints are so important because mountain glaciers are sensitive to climate change and their deposits provide a unique history of Earths terrestrial climate that allows reconstructing leads and lags in the climate system.

The climate sensitivity of mountain glaciers is influenced by debris on their surface that impedes ice melting. Theoretical models of frost-related bedrock fracturing predict that rates of debris production are temperature-sensitive and that its supply to mountain glaciers increases during warming periods. Thus a previously unrecognized negative feedback emerges that lowers ice melt rates and potentially buffers part of the ice retreat due to warming. However, the temperature-sensitivity of debris production in glacial landscapes is poorly understood. Specifically, we lack robust erosion rate estimates for these landscapes, which are key for testing models of frost-related bedrock fracturing.

Here, I propose an innovative combination of new tools that capitalize on recent developments in cosmogenic nuclide geochemistry, landscape evolution modelling, and planetary-scale remote sensing analysis. I will use these tools to quantify headwall erosion rates in mountainous glacial landscapes and to gauge the sensitivity of mountain glaciers to variations in debris supply. Expected results will provide a basis for assessing the impacts of global warming, for improved predictions of valley glacier evolution, and for palaeoclimate interpretations of glacial landforms. COLD will focus on glacial landscapes, but the inverse modelling approach I will develop is applicable to any landscape on Earth and has the potential to fundamentally transform how we use cosmogenic nuclides to constrain Earth surface dynamics.

 Publications

year authors and title journal last update
List of publications.
2018 Dirk Scherler, Hendrik Wulf, Noel Gorelick
Global Assessment of Supraglacial Debris-Cover Extents
published pages: 11,798-11,805, ISSN: 0094-8276, DOI: 10.1029/2018gl080158
Geophysical Research Letters 45/21 2019-09-02

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "COLD" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "COLD" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

BECAME (2020)

Bimetallic Catalysis for Diverse Methane Functionalization

Read More  

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More