Opendata, web and dolomites

HamInstab SIGNED

Instabilities and homoclinic phenomena in Hamiltonian systems

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 HamInstab project word cloud

Explore the words cloud of the HamInstab project. It provides you a very rough idea of what is the project "HamInstab" about.

stability    transfer    scarce    ouml    showing    mean    homoclinic    accumulates    solutions    body    phenomena    prove    secular    equations    force    perturbation    arbitrarily    partial    effect    heteroclinic    schr    averages    periodic    drifting    mathematical    mechanics    instability    transversal    techniques    differential    modes    global    integrable    wave    klein    masses    arnold    motion    model    time    infinite    oscillatory    puntual    nevertheless    dynamical    proper    nearly    models    orbits    existence    resonances    nonlinear    plan    gordon    instabilities    objects    interaction    motions    place    breathers    push    hamiltonian    celestial    framework    stationary    theory    construct    localized    energy    dinger    invariant    usually    analyze    ascertain    astronomers    solution    physically    relying    fundamental    diffusion    manifolds    dimensional    connections    hyperbolic    gravitational    setting    deeply    leads    dynamics    pdes    intersection   

Project "HamInstab" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAT POLITECNICA DE CATALUNYA 

Organization address
address: CALLE JORDI GIRONA 31
city: BARCELONA
postcode: 8034
website: www.upc.edu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Project website https://haminstab.barcelonatech-upc.eu/
 Total cost 1˙100˙347 €
 EC max contribution 1˙100˙347 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-STG
 Funding Scheme ERC-STG
 Starting year 2018
 Duration (year-month-day) from 2018-01-01   to  2022-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAT POLITECNICA DE CATALUNYA ES (BARCELONA) coordinator 1˙100˙347.00

Map

 Project objective

A fundamental problem in the study of dynamical systems is to ascertain whether the effect of a perturbation on an integrable Hamiltonian system accumulates over time and leads to a large effect (instability) or it averages out (stability). Instabilities in nearly integrable systems, usually called Arnold diffusion, take place along resonances and by means of a framework of partially hyperbolic invariant objects and their homoclinic and heteroclinic connections.

The goal of this project is to develop new techniques, relying on the role of invariant manifolds in the global dynamics, to prove the existence of physically relevant instabilities and homoclinic phenomena in several problems in celestial mechanics and Hamiltonian Partial Differential Equations.

The N body problem models the interaction of N puntual masses under gravitational force. Astronomers have deeply analyzed the role of resonances in this model. Nevertheless, mathematical results showing instabilities along them are rather scarce. I plan to develop a new theory to analyze the transversal intersection between invariant manifolds along mean motion and secular resonances to prove the existence of Arnold diffusion. I will also apply this theory to construct oscillatory motions.

Several Partial Differential Equations such as the nonlinear Schrödinger, the Klein-Gordon and the wave equations can be seen as infinite dimensional Hamiltonian systems. Using dynamical systems techniques and understanding the role of invariant manifolds in these Hamiltonian PDEs, I will study two type of solutions: transfer of energy solutions, namely solutions that push energy to arbitrarily high modes as time evolves by drifting along resonances; and breathers, spatially localized and periodic in time solutions, which in a proper setting can be seen as homoclinic orbits to a stationary solution.

 Publications

year authors and title journal last update
List of publications.
2019 Marcel Guardia, Vadim Kaloshin, Jianlu Zhang
Asymptotic Density of Collision Orbits in the Restricted Circular Planar 3 Body Problem
published pages: 799-836, ISSN: 0003-9527, DOI: 10.1007/s00205-019-01368-7
Archive for Rational Mechanics and Analysis 233/2 2019-08-05

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "HAMINSTAB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "HAMINSTAB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

KineTic (2020)

New Reagents for Quantifying the Routing and Kinetics of T-cell Activation

Read More  

TechChange (2019)

Technological Change: New Sources, Consequences, and Impact Mitigation

Read More  

INSPIRE (2019)

System-wide discovery and analysis of inositol pyrophosphate signaling networks in plants

Read More