Opendata, web and dolomites

CHAMPAGNE SIGNED

CoHerent AMplification and PArametric GeNeration of Euv radiation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "CHAMPAGNE" data sheet

The following table provides information about the project.

Coordinator
FYZIKALNI USTAV AV CR V.V.I 

Organization address
address: NA SLOVANCE 2
city: PRAHA 8
postcode: 18221
website: www.fzu.cz

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Czech Republic [CZ]
 Total cost 154˙720 €
 EC max contribution 154˙720 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2017
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2018
 Duration (year-month-day) from 2018-10-01   to  2020-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FYZIKALNI USTAV AV CR V.V.I CZ (PRAHA 8) coordinator 154˙720.00

Map

 Project objective

The coherent extreme ultra violet (EUV) pulses produced via high harmonic generation (HHG) in gases are now the main workhorse for various applications of atomic physics and physical chemistry. As the generation efficiency is very low, the number of applications is limited by the low EUV photon flux. The main ambition of this project is to perform a coherent parametric amplification of the EUV pulses in order to significantly increase the EUV photon flux.

Such an achievement would be an enabling technology causing a breakthrough in the field of atomic physics, physical chemistry, biology, material science and probably other fields as well. Applications suffering from poor signal/noise ratio will become widespread as they will not be limited anymore to research labs where the EUV sources are optimized daily. Moreover, higher photon flux opens completely new physics, as the EUV nonlinear optics becomes widely accessible and two-EUV-photon absorption turns out to be routine.

Very recently a theoretical study was published on high order parametric generation based on the same number of infrared photons absorbed as in “standard” HHG. However, in contrast to HHG, 3 photons are emitted. We have already obtained preliminary data that suggest the presence of EUV photons of slightly lower energies than those originating from HHG. The photon energy difference corresponds to two photons from THz part of the spectrum and is in agreement with the theory.

In the project, we identify our major objectives as work packages: WP1: Detection and optimization of the parametric EUV signature in HHG EUV spatially-resolved spectra. WP2: Study on detection of the THz field originating in HHG. WP3: Injection of externally generated THz beam to boost the high parametric process leading to amplification of EUV.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CHAMPAGNE" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CHAMPAGNE" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More  

ACES (2019)

Antarctic Cyclones: Expression in Sea Ice

Read More  

FarGo (2019)

'Farming God's Way': Cultivation and religious practice in contemporary South Africa

Read More