Opendata, web and dolomites

TRANSHOLOMORPHIC SIGNED

New transversality techniques in holomorphic curve theories

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 TRANSHOLOMORPHIC project word cloud

Explore the words cloud of the TRANSHOLOMORPHIC project. It provides you a very rough idea of what is the project "TRANSHOLOMORPHIC" about.

super    invariants    relations    examples    analogues    spaces    fundamental    lagrangian    topology    formula    hutchings    curvature    solutions    nearby    orbits    curve    techniques    nonpositive    dynamical    conjecture    integrality    transversality    implications    foundations    completing    unravel    gopakumar    yau    dynamics    decisive    structures    contact    cauchy    moduli    tackling    explored    played    riemannian    multiply    conflict    geometry    curves    setting    genericity    manifolds    proof    negative    calabi    theory    witten    planar    dimensional    progress    dimension    abstract    ech    singular    folds    analogous    equation    reeb    whenever    instance    1985    full    bundles    overriding    bifurcation    perturbations    embedding    covered    wrong    riemann    refinements    causes    holomorphic    pseudoholomorphic    rigidity    symmetry    cobordisms    homology    cotangent    symplectic    quasiflexible    analytical    involve    neighboring    drawback    gromov    vafa    proving    questions   

Project "TRANSHOLOMORPHIC" data sheet

The following table provides information about the project.

Coordinator
HUMBOLDT-UNIVERSITAET ZU BERLIN 

Organization address
address: UNTER DEN LINDEN 6
city: BERLIN
postcode: 10117
website: www.hu-berlin.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙624˙500 €
 EC max contribution 1˙624˙500 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2017-COG
 Funding Scheme ERC-COG
 Starting year 2018
 Duration (year-month-day) from 2018-09-01   to  2023-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    HUMBOLDT-UNIVERSITAET ZU BERLIN DE (BERLIN) coordinator 1˙624˙500.00

Map

 Project objective

'In the study of symplectic and contact manifolds, a decisive role has been played by the theory of pseudoholomorphic curves, introduced by Gromov in 1985. One major drawback of this theory is the fundamental conflict between 'genericity' and 'symmetry', which for instance causes moduli spaces of holomorphic curves to be singular or have the wrong dimension whenever multiply covered curves are present. Most traditional solutions to this problem involve abstract perturbations of the Cauchy-Riemann equation, but recently there has been progress in tackling the transversality problem more directly, leading in particular to a proof of the 'super-rigidity' conjecture on symplectic Calabi-Yau 6-manifolds. The overriding goal of the proposed project is to unravel the full implications of these new transversality techniques for problems in symplectic topology and neighboring fields. Examples of applications to be explored include: (1) Understanding the symplectic field theory of unit cotangent bundles for manifolds with negative or nonpositive curvature, with applications to the nearby Lagrangian conjecture and dynamical questions in Riemannian geometry; (2) Developing a comprehensive bifurcation theory for Reeb orbits and holomorphic curves in symplectic cobordisms, leading e.g. to a proof that planar contact structures are 'quasiflexible'; (3) Completing the analytical foundations of Hutchings's embedded contact homology (ECH), a 3-dimensional holomorphic curve theory with important applications to dynamics and symplectic embedding problems; (4) Developing new refinements of the Gromov-Witten invariants based on super-rigidity and bifurcation theory; (5) Defining higher-dimensional analogues of ECH; (6) Proving integrality relations in the setting of 6-dimensional symplectic cobordisms, analogous to the Gopakumar-Vafa formula for Calabi-Yau 3-folds.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "TRANSHOLOMORPHIC" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "TRANSHOLOMORPHIC" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CARBYNE (2020)

New carbon reactivity rules for molecular editing

Read More  

PonD (2019)

Particles-on-Demand for Multiscale Fluid Dynamics

Read More  

ENUF (2019)

Evaluation of Novel Ultra-Fast selective III-V Epitaxy

Read More