Explore the words cloud of the ReduceSearch project. It provides you a very rough idea of what is the project "ReduceSearch" about.
The following table provides information about the project.
Coordinator |
TECHNISCHE UNIVERSITEIT EINDHOVEN
Organization address contact info |
Coordinator Country | Netherlands [NL] |
Total cost | 1˙473˙020 € |
EC max contribution | 1˙473˙020 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-STG |
Funding Scheme | ERC-STG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-01-01 to 2023-12-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | TECHNISCHE UNIVERSITEIT EINDHOVEN | NL (EINDHOVEN) | coordinator | 1˙473˙020.00 |
In our world of big data and theoretically intractable problems, automated preprocessing to simplify problem formulations before solving them algorithmically is growing ever more important. Suitable preprocessing has the potential to reduce computation times from days to seconds. In the last 15 years, a framework for rigorously studying the power and limitations of efficient preprocessing has been developed. The resulting theory of kernelization is full of deep theorems, but it has overshot its goal: it does not explain the empirical success of preprocessing algorithms, and most questions it poses do not lead to the identification of preprocessing techniques that are useful in practice. This crucial flaw stems from the fact that the theoretical kernelization framework does not address the main experimentally observed cause of algorithmic speed-ups: a reduction in the search space of the subsequently applied problem-solving algorithm.
REDUCESEARCH will re-shape the theory of effective preprocessing with a focus on search-space reduction. The goal is to develop a toolkit of algorithmic preprocessing techniques that reduce the search space, along with rigorous mathematical guarantees on the amount of search-space reduction that is achieved in terms of quantifiable properties of the input. The three main algorithmic strategies are: (1) reducing the size of the solution that the solver has to find, by already identifying parts of the solution during the preprocessing phase; (2) splitting the search space into parts with limited interaction, which can be solved independently; and (3) identifying redundant constraints and variables in a problem formulation, which can be eliminated without changing the answer.
This will raise the scientific study of preprocessing to the next level. Since physical limits form a barrier to further speeding up computer hardware, future advances in computing power rely on algorithmic breakthroughs as envisioned here.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "REDUCESEARCH" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "REDUCESEARCH" are provided by the European Opendata Portal: CORDIS opendata.
A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans
Read MoreJust because we can, should we? An anthropological perspective on the initiation of technology dependence to sustain a child’s life
Read MoreUnderstanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell
Read More