Opendata, web and dolomites

SPECs SIGNED

Sustainable plasmon-enhanced catalysis

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SPECs project word cloud

Explore the words cloud of the SPECs project. It provides you a very rough idea of what is the project "SPECs" about.

industries    advancing    model    traps    relative    concentrate    oscillations    surface    guide    sustain    alternatives    understand    reactions    delivered    amongst    metal    nanostructures    surfaces    catalysis    unsustainable    agricultural    plasmonic    material    revealing    heat    mainly    barriers    dream    enhanced    sun    lsprs    sustainably    ag    fuels    numerical    organic    contribution    relying    cheap    earth    light    practices    constructed    industrial    prohibitive    fundamental    catalysts    metals    intelligently    few    made    almost    molecular    al    energy    world    photochemical    predicted    power    electrons    choreograph    hope    experimental    exclusively    chemical    materials    closer    chemicals    cleanly    lowering    utilized    synthesize    mg    na    electron    abundant    plasmon    devised    worldwide    rare    provides    lower    synthetic    photochemistry    concentrates    incompatible    unravelling    sustainable    reliance    resonances    multimetallic    inorganic    trapping    staggering    meanwhile    localized    nanoparticles    catalytic       efficient    fossil    concurrently    hot    au   

Project "SPECs" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙596˙481 €
 EC max contribution 1˙596˙481 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 1˙596˙481.00

Map

 Project objective

Industries creating inorganic, organic, and agricultural chemicals use a staggering 4.2% of the worldwide delivered energy, mainly from unsustainable fossil fuels. Meanwhile, the sun provides energy that could be utilized to power photochemical reactions sustainably and cleanly. Recent advances revealing how localized surface plasmon resonances (LSPRs), light-driven electron oscillations in metal nanoparticles, can concentrate light at the molecular scale made the dream of efficient photochemistry one step closer. However, plasmonic materials are almost exclusively constructed from the rare and unsustainable metals Ag and Au. In addition to being incompatible with current industrial practices relying on catalytic surfaces to lower energy barriers and guide reactions, Ag and Au cause prohibitive cost challenges for real-world applications. But there is hope: several of the few metals predicted to sustain LSPRs and become potential alternatives to Ag and Au are amongst the most abundant, i.e. sustainable, elements on Earth (Al, Mg, Na, K). The way forward, and key objective of my proposal, is thus to design, synthesize, and understand multimetallic nanostructures where a cheap, Earth-abundant plasmonic material traps and concentrates (sun)light directly at a catalytic surface to efficiently and intelligently power and choreograph chemical reactions. To achieve this ambitious goal, I devised a project concurrently advancing important aspects of sustainable plasmon-enhanced catalysis, from the development of two synthetic approaches for Earth-abundant plasmonic-catalysts, to the fundamental studies of light-trapping in these new materials with state-of-the-art numerical and experimental approaches and the unravelling of the relative contribution of plasmon-generated hot electrons, enhanced field, and heat using key model chemical reactions. These results will help develop a more sustainable future by lowering our reliance on both fossil fuels and rare metals.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SPECS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SPECS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

evolSingleCellGRN (2019)

Constraint, Adaptation, and Heterogeneity: Genomic and single-cell approaches to understanding the evolution of developmental gene regulatory networks

Read More  

GelGeneCircuit (2020)

Cancer heterogeneity and therapy profiling using bioresponsive nanohydrogels for the delivery of multicolor logic genetic circuits.

Read More  

MATCH (2020)

Discovering a novel allergen immunotherapy in house dust mite allergy tolerance research

Read More