Opendata, web and dolomites

EVOCLOCK SIGNED

From Evolution to Clockworks:Unravelling the molecular basis of circalunar clocks

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "EVOCLOCK" data sheet

The following table provides information about the project.

Coordinator
MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV 

Organization address
address: HOFGARTENSTRASSE 8
city: MUENCHEN
postcode: 80539
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 1˙499˙728 €
 EC max contribution 1˙499˙728 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (MUENCHEN) coordinator 1˙499˙728.00

Map

 Project objective

Circalunar clocks are endogenous biological clocks, which allow organisms to time development and reproduction to lunar phase. They are common in marine organisms, but their molecular basis is still entirely unknown. Candidate gene approaches have failed so far. In the marine midge Clunio marinus (Diptera: Chironomidae), I can elegantly overcome this problem by exploiting an array of local genetic adaptations in circalunar timing. Through evolutionary analysis, QTL mapping and genome screens my group currently produces evidence-based circalunar candidate genes without any need for prior knowledge or assumptions.

In this ERC proposal, I aim to take this work to the next level and identify the molecular and cellular basis of circalunar clocks. I will establish molecular tools for Clunio and use them to confirm and characterize circalunar clock candidate genes. Specifically, I aim to: (WP1) Establish genome editing and confirm candidate genes via knockout and allelic replacement. (WP2) Study gene expression modules across the lunar cycle and identify the transcriptional regulators that exert circalunar control on development and maturation. (WP3) Describe Clunio’s larval nervous system and trace circalunar clock sensory input pathways to their convergence point. This will identify the cellular substrate of the circalunar clock. (WP4) Settle the on-going debate on the role of circadian clocks in circalunar timing. I will particularly study the role of the famous period gene.

In the future, this molecular endeavour will also boost evolutionary work: Clunio will provide insights into fundamental questions, such as the role of genome architecture in local adaptation. But immediately, unravelling the molecular basis of circalunar clocks will be a breakthrough in chronobiology. It will inspire new ideas and experiments. Comparing circalunar to circadian clocks, we will for the first time be able to see basic principles in the molecular design of biological clocks.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EVOCLOCK" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EVOCLOCK" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

TroyCAN (2020)

Redefining the esophageal stem cell niche – towards targeting of squamous cell carcinoma

Read More  

UNITY (2020)

A Single-Photon Source Featuring Unity Efficiency And Unity Indistinguishability For Scalable Optical Quantum Information Processing

Read More  

HYDROGEN (2019)

HighlY performing proton exchange membrane water electrolysers with reinforceD membRanes fOr efficient hydrogen GENeration

Read More