Explore the words cloud of the KAPIBARA project. It provides you a very rough idea of what is the project "KAPIBARA" about.
The following table provides information about the project.
Coordinator |
INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK
Organization address contact info |
Coordinator Country | Poland [PL] |
Total cost | 1˙007˙500 € |
EC max contribution | 1˙007˙500 € (100%) |
Programme |
1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC)) |
Code Call | ERC-2018-STG |
Funding Scheme | ERC-STG |
Starting year | 2019 |
Duration (year-month-day) | from 2019-06-01 to 2024-05-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | INSTYTUT MATEMATYCZNY POLSKIEJ AKADEMII NAUK | PL (WARSZAWA) | coordinator | 1˙007˙500.00 |
The aim of the proposed research is to study the homotopy theory of algebraic varieties and other algebraically defined geometric objects, especially over fields other than the complex numbers. A noticeable emphasis will be put on fundamental groups and on K(pi, 1) spaces, which serve as building blocks for more complicated objects. The most important source of both motivation and methodology is my recent discovery of the K(pi, 1) property of affine schemes in positive characteristic and its relation to wild ramification phenomena.
The central goal is the study of etale homotopy types in positive characteristic, where we hope to use the aforementioned discovery to yield new results beyond the affine case and a better understanding of the fundamental group of affine schemes. The latter goal is closely tied to Grothendieck's anabelian geometry program, which we would like to extend beyond its usual scope of hyperbolic curves.
There are two bridges going out of this central point. The first is the analogy between wild ramification and irregular singularities of algebraic integrable connections, which prompts us to translate our results to the latter setting, and to define a wild homotopy type whose fundamental group encodes the category of connections.
The second bridge is the theory of perfectoid spaces, allowing one to pass between characteristic p and p-adic geometry, which we plan to use to shed some new light on the homotopy theory of adic spaces. At the same time, we address the related question: when is the universal cover of a p-adic variety a perfectoid space? We expect a connection between this question and the Shafarevich conjecture and varieties with large fundamental group.
The last part of the project deals with varieties over the field of formal Laurent series over C, where we want to construct a Betti homotopy realization using logarithmic geometry. The need for such a construction is motivated by certain questions in mirror symmetry.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "KAPIBARA" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "KAPIBARA" are provided by the European Opendata Portal: CORDIS opendata.