Opendata, web and dolomites

VERICOMP SIGNED

Foundations of Verifiable Computing

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "VERICOMP" data sheet

The following table provides information about the project.

Coordinator
WEIZMANN INSTITUTE OF SCIENCE 

Organization address
address: HERZL STREET 234
city: REHOVOT
postcode: 7610001
website: www.weizmann.ac.il

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Israel [IL]
 Total cost 1˙882˙460 €
 EC max contribution 1˙882˙460 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-01-01   to  2023-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    WEIZMANN INSTITUTE OF SCIENCE IL (REHOVOT) coordinator 1˙882˙460.00

Map

 Project objective

Proof systems allow a weak verifier to ascertain the correctness of complex computational statements. Efficiently-verifiable proof systems are fundamental objects in the study of computation, and have led to some of the deepest and most celebrated insights in cryptography and in complexity theory.

The vast and rich literature on proof systems focuses primarily on proving the correctness of intractable statements, e.g. ones that are NP-complete. While the verification can be efficient, the proofs themselves cannot be generated in polynomial time. This limits the applicability of such proof systems, both from a theoretical perspective and in their real-world impact. This proposal aims to obtain a comprehensive understanding of proof systems with polynomial-time proof generation, to explore their practical applicability, and to investigate their connections with foundational questions in cryptography and in complexity theory.

Our study will focus primarily on interactive proof systems for tractable computations. The proposed research aims to revolutionize our understanding of these foundational objects by providing a complete and tight characterization of the complexity or proving and verifying general statements, by achieving breakthroughs in the study of related proof system notions, such as cryptographic arguments, and by building a fine-grained “algorithmic” theory of proof systems for central polynomial-time computational problems.

Our research will leverage these advances towards diverse applications: from real-world security challenges, such as verifying the correctness of computations performed by the cloud and cryptographic “proofs of work”, to a complexity-theoretic understanding of the complexity of approximating problems in P and of solving them on random instances.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "VERICOMP" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "VERICOMP" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

REPLAY_DMN (2019)

A theory of global memory systems

Read More  

HYDROGEN (2019)

HighlY performing proton exchange membrane water electrolysers with reinforceD membRanes fOr efficient hydrogen GENeration

Read More  

E-DIRECT (2020)

Evolution of Direct Reciprocity in Complex Environments

Read More