Opendata, web and dolomites

FuncMAB SIGNED

High-throughput single-cell phenotypic analysis of functional antibody repertoires

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "FuncMAB" data sheet

The following table provides information about the project.

Coordinator
EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH 

Organization address
address: Raemistrasse 101
city: ZUERICH
postcode: 8092
website: https://www.ethz.ch/de.html

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Switzerland [CH]
 Total cost 1˙500˙000 €
 EC max contribution 1˙500˙000 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-STG
 Funding Scheme ERC-STG
 Starting year 2019
 Duration (year-month-day) from 2019-02-01   to  2024-01-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EIDGENOESSISCHE TECHNISCHE HOCHSCHULE ZUERICH CH (ZUERICH) coordinator 1˙223˙000.00
2    ECOLE SUPERIEURE DE PHYSIQUE ET DECHIMIE INDUSTRIELLES DE LA VILLE DEPARIS FR (PARIS) participant 277˙000.00

Map

 Project objective

Antibodies play an important role ensuring successful protection after vaccination. Upon injection, antigen-binding antibodies are generated to prime the host’s immune system for future encounters with the threat. These responses are highly heterogeneous, with each cell contributing with a single antibody variant to the complexity. Each antibody variant furthermore can recognize a different antigen/epitope with varying specificity and affinity. The immunological function induced is related to those parameters.

Depending on the nature of the threat, required protective functional antibodies vary. Therefore, also each vaccination against those threads needs to trigger a specific functional antibody repertoire. Presently, induced functional antibody repertoires have not yet been studied sufficiently, mostly due to the lack of technologies that enable analysing these repertoires with high enough throughput and resolution. Consequently, the mechanisms behind the evolution of these functional repertoires, and the influence of vaccination on these repertoires remain poorly understood.

An innovative technology combined with a methodical approach to vaccinations will enable the FuncMab research team to generate data sets needed for the understanding of immunological processes that result in different functional antibody repertoires. Herein, antibodies are analysed on the individual cell level in high-throughput using specific bioassays that target various antibody functions and their biophysical parameters, generating high-resolution data. These functional repertoires are followed over time and evolutionary changes can be linked to introduced vaccine variations, allowing a quantitative approach to study the changes within the repertoires. These in-depth data sets will not only allow understanding interactions between vaccine components and their generated immune responses, but also propels this project to the forefront of creating a new generation of successful vaccines

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FUNCMAB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FUNCMAB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

FatVirtualBiopsy (2020)

MRI toolkit for in vivo fat virtual biopsy

Read More  

Mu-MASS (2019)

Muonium Laser Spectroscopy

Read More  

MajoranasAreReal (2019)

Search for mechanisms to control chiral Majorana modes in superconductors

Read More