Opendata, web and dolomites

ImmunoStem SIGNED

Dissecting and Overcoming Innate Immune Barriers for Therapeutically Efficient Hematopoietic Stem Cell Gene Engineering

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ImmunoStem project word cloud

Explore the words cloud of the ImmunoStem project. It provides you a very rough idea of what is the project "ImmunoStem" about.

thorough    instruct    host    cell    viral    potentially    single    mitigate    innate    trials    hsc    disorders    clinical    blocks    doses    platforms    lentiviral    recognition    prolonged    ground    technologies    levels    implications    outcomes    broad    breaking    crosstalk    hematopoietic    autoimmune    primitive    hampering    iceberg    effectors    hurdle    infectious    small    successful    plethora    cells    vector    acid    human    individual    molecules    tip    antiviral    innovative    modification    mere    editing    completion    manipulating    sensors    direct    vectors    broadly    paradigms    gene    components    cutting    culture    fight    restrict    expose    immune    stem    efficiencies    pathogen    first    ex    prevent    action    therapy    discovered    engineering    exportable    vivo    edge    diseases    sustainable    efficient    transfer    nevertheless    variability    nucleic    genetic    compartment    clinically    counteract    sensing    manipulation    potently    progress    therapies    efficiency    builds    mechanisms    significantly   

Project "ImmunoStem" data sheet

The following table provides information about the project.

Coordinator
OSPEDALE SAN RAFFAELE SRL 

Organization address
address: VIA OLGETTINA 60
city: MILANO
postcode: 20132
website: www.hsr.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 1˙994˙375 €
 EC max contribution 1˙994˙375 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    OSPEDALE SAN RAFFAELE SRL IT (MILANO) coordinator 1˙994˙375.00

Map

 Project objective

The low gene manipulation efficiency of human hematopoietic stem cells (HSC) remains a major hurdle for sustainable and broad clinical application of innovative therapies for a wide range of disorders. Indeed, high vector doses and prolonged ex vivo culture are still required for clinically relevant levels of gene transfer even with the most established lentiviral vector-based delivery platforms. Current and emerging gene transfer and editing technologies expose HSC to components potentially recognized by host antiviral factors and nucleic acid sensors that likely restrict their genetic engineering and contribute to broad individual variability in clinical outcomes observed in recent gene therapy trials. Nevertheless, specific effectors are yet to be identified in HSC. We have recently identified an antiviral factor that potently blocks gene transfer in HSC and have discovered small molecules that efficiently counteract it. This is the first example of how manipulating a single host factor can significantly impact gene transfer efficiencies in HSC but likely represents the mere tip of the iceberg of the plethora of innate sensing mechanisms potentially hampering genetic manipulation of this primitive cell compartment. This proposal aims to identify the antiviral factors and innate sensing pathways that prevent efficient modification of HSC and to mitigate their effects using methods developed through a thorough understanding of their mechanisms of action. My approach builds on the innovative concept that understanding the crosstalk between HSC and viral vectors will instruct us on which immune sensors and effectors to avoid and how, with direct implications for all gene engineering technologies. Successful completion of this project will deliver broadly exportable novel paradigms of innate pathogen recognition that will allow ground-breaking progress in the development of cutting-edge cell and gene therapies and to fight infectious and autoimmune diseases.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "IMMUNOSTEM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "IMMUNOSTEM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

CoolNanoDrop (2019)

Self-Emulsification Route to NanoEmulsions by Cooling of Industrially Relevant Compounds

Read More  

QLite (2019)

Quantum Light Enterprise

Read More  

QUAMAP (2019)

Quasiconformal Methods in Analysis and Applications

Read More