Opendata, web and dolomites

ImmunoStem SIGNED

Dissecting and Overcoming Innate Immune Barriers for Therapeutically Efficient Hematopoietic Stem Cell Gene Engineering

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 ImmunoStem project word cloud

Explore the words cloud of the ImmunoStem project. It provides you a very rough idea of what is the project "ImmunoStem" about.

broad    components    levels    molecules    paradigms    hampering    recognition    innovative    progress    nucleic    vector    mere    lentiviral    effectors    exportable    vectors    sensors    efficiency    mitigate    viral    prevent    expose    direct    trials    instruct    thorough    successful    vivo    therapies    sustainable    autoimmune    ex    innate    action    efficient    first    doses    clinical    pathogen    culture    variability    plethora    cutting    discovered    prolonged    platforms    hematopoietic    manipulation    disorders    edge    crosstalk    editing    completion    potently    sensing    genetic    immune    manipulating    breaking    stem    efficiencies    human    implications    ground    modification    compartment    engineering    nevertheless    iceberg    counteract    potentially    individual    tip    hurdle    host    technologies    builds    significantly    diseases    single    therapy    gene    cells    acid    blocks    outcomes    hsc    transfer    antiviral    restrict    primitive    infectious    clinically    mechanisms    cell    small    broadly    fight   

Project "ImmunoStem" data sheet

The following table provides information about the project.

Coordinator
OSPEDALE SAN RAFFAELE SRL 

Organization address
address: VIA OLGETTINA 60
city: MILANO
postcode: 20132
website: www.hsr.it

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Italy [IT]
 Total cost 1˙994˙375 €
 EC max contribution 1˙994˙375 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2019
 Duration (year-month-day) from 2019-03-01   to  2024-02-29

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    OSPEDALE SAN RAFFAELE SRL IT (MILANO) coordinator 1˙994˙375.00

Map

 Project objective

The low gene manipulation efficiency of human hematopoietic stem cells (HSC) remains a major hurdle for sustainable and broad clinical application of innovative therapies for a wide range of disorders. Indeed, high vector doses and prolonged ex vivo culture are still required for clinically relevant levels of gene transfer even with the most established lentiviral vector-based delivery platforms. Current and emerging gene transfer and editing technologies expose HSC to components potentially recognized by host antiviral factors and nucleic acid sensors that likely restrict their genetic engineering and contribute to broad individual variability in clinical outcomes observed in recent gene therapy trials. Nevertheless, specific effectors are yet to be identified in HSC. We have recently identified an antiviral factor that potently blocks gene transfer in HSC and have discovered small molecules that efficiently counteract it. This is the first example of how manipulating a single host factor can significantly impact gene transfer efficiencies in HSC but likely represents the mere tip of the iceberg of the plethora of innate sensing mechanisms potentially hampering genetic manipulation of this primitive cell compartment. This proposal aims to identify the antiviral factors and innate sensing pathways that prevent efficient modification of HSC and to mitigate their effects using methods developed through a thorough understanding of their mechanisms of action. My approach builds on the innovative concept that understanding the crosstalk between HSC and viral vectors will instruct us on which immune sensors and effectors to avoid and how, with direct implications for all gene engineering technologies. Successful completion of this project will deliver broadly exportable novel paradigms of innate pathogen recognition that will allow ground-breaking progress in the development of cutting-edge cell and gene therapies and to fight infectious and autoimmune diseases.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "IMMUNOSTEM" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "IMMUNOSTEM" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

E-DIRECT (2020)

Evolution of Direct Reciprocity in Complex Environments

Read More  

HYDROGEN (2019)

HighlY performing proton exchange membrane water electrolysers with reinforceD membRanes fOr efficient hydrogen GENeration

Read More  

REPLAY_DMN (2019)

A theory of global memory systems

Read More