Opendata, web and dolomites

ChaperoneRegulome SIGNED

ChaperoneRegulome: Understanding cell-type-specificity of chaperone regulation

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "ChaperoneRegulome" data sheet

The following table provides information about the project.

Coordinator
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE 

Organization address
address: TRINITY LANE THE OLD SCHOOLS
city: CAMBRIDGE
postcode: CB2 1TN
website: www.cam.ac.uk

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 1˙992˙500 €
 EC max contribution 1˙992˙500 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-COG
 Funding Scheme ERC-COG
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2024-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE UK (CAMBRIDGE) coordinator 1˙992˙500.00
2    MAX-PLANCK-GESELLSCHAFT ZUR FORDERUNG DER WISSENSCHAFTEN EV DE (MUENCHEN) participant 0.00

Map

 Project objective

Protein misfolding causes devastating health conditions such as neurodegeneration. Although the disease-causing protein is widely expressed, its misfolding occurs only in certain cell-types such as neurons. What governs the susceptibility of some tissues to misfolding is a fundamental question with biomedical relevance. Molecular chaperones help cellular proteins fold into their native conformation. Despite the generality of their function, chaperones are differentially expressed across various tissues. Moreover exposure to misfolding stress changes chaperone expression in a cell-type-dependent manner. Thus cell-type-specific regulation of chaperones is a major determinant of susceptibility to misfolding. The molecular mechanisms governing chaperone levels in different cell-types are not understood, forming the basis of this proposal. We will take a multidisciplinary approach to address two key questions: (1) How are chaperone levels co-ordinated with tissue-specific demands on protein folding? (2) How do different cell-types regulate chaperone genes when exposed to the same misfolding stress? Cellular chaperone levels and their response to misfolding stress are both driven by transcriptional changes and influenced by chromatin. The proposed work will bring the conceptual, technological and computational advances of chromatin/ transcription field to understand chaperone biology and misfolding diseases. Using in vivo mouse model and in vitro differentiation model, we will investigate molecular mechanisms that control chaperone levels in relevant tissues. Our work will provide insights into functional specialization of chaperones driven by tissue-specific folding demands. We will develop a novel and ambitious approach to assess protein-folding capacity in single cells moving the chaperone field beyond state-of-the-art. Thus by implementing genetic, computational and biochemical approaches, we aim to understand cell-type-specificity of chaperone regulation.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "CHAPERONEREGULOME" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "CHAPERONEREGULOME" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

MOCHA (2019)

Understanding and leveraging ‘moments of change’ for pro-environmental behaviour shifts

Read More  

MajoranasAreReal (2019)

Search for mechanisms to control chiral Majorana modes in superconductors

Read More  

DDREAMM (2020)

Dna Damage REsponse: Actionabilities, Maps and Mechanisms

Read More