Opendata, web and dolomites

SCAMPICITY SIGNED

cAMP-dependend plasticity of striatal projection neurons in health and disease

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 SCAMPICITY project word cloud

Explore the words cloud of the SCAMPICITY project. It provides you a very rough idea of what is the project "SCAMPICITY" about.

camp    secondly    tools    unknown    elevate    d2    look    responsiveness    striatum    synapse    activation    disorder    divide    messenger    notion    neurodegenerative    relates    plasticity    potentially    model    vivo    dendritic    parkinson    interrupted    suggest    structural    neurons    striatal    presumably    ask    transient    unraveling    drug    corticostriatal    lastly    disease    signaling    induce    levels    subsequent    optogenetic    inform    symptoms    sufficient    data    coupled    synaptic    precise    unravel    cell    express    leads    health    aberrant    transmission    dopamine    unpublished    spn    untested    opposite    dspns    activates    resolution    da    cascade    projection    ispns    spns    reveal    spiny    protocols    caused    receptor    groups    potentiated    combat    strategies    death    treatments    spines    mediated    altered    preferentially    pd    animal    lack    d1    spatiotemporal    subgroups    weakening    alone    motor    inhibits   

Project "SCAMPICITY" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITAETSKLINIKUM HAMBURG-EPPENDORF 

Organization address
address: Martinistrasse 52
city: HAMBURG
postcode: 20251
website: www.uke.uni-hamburg.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 174˙806 €
 EC max contribution 174˙806 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2021-03-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITAETSKLINIKUM HAMBURG-EPPENDORF DE (HAMBURG) coordinator 174˙806.00

Map

 Project objective

The project aims to reveal the so far unknown role of cAMP in structural and synaptic plasticity of striatal spiny projection neurons (SPNs) in health and disease. Striatal SPNs divide into two subgroups: the dSPNs and iSPNs. While dSPNs preferentially express the D1 dopamine (DA) receptor, iSPNs express the D2 receptor. Both are coupled to the cAMP second messenger cascade, however the D1-receptor activates and the D2-receptor inhibits it. DA has therefore opposite effects on the two SPN groups, both mediated by cAMP. Parkinson’s disease (PD) is the second most common neurodegenerative disorder. It is characterized by typical motor symptoms caused by the death of DA neurons and the subsequent lack of DA in the striatum. A long-standing but untested notion in the field is that loss of DA leads to aberrant cAMP levels and signaling in SPNs. The project will look at the role of cAMP in SPN synaptic and structural plasticity. We will use novel optogenetic tools that allow cell-type specific activation of cAMP, with high spatiotemporal resolution. Focusing on corticostriatal synaptic transmission, we want to ask if transient activation of cAMP alone is sufficient to induce plasticity (e.g. strengthening or weakening) of this synapse. Secondly, we will use known plasticity protocols and test if precise activation of cAMP can interrupted or potentiated them. Unpublished data suggest that in vivo drug treatments that presumably elevate cAMP in SPNs induce structural plasticity, i.e. loss of dendritic spines. Following this we will unravel if cell-type specific activation of cAMP is sufficient to induce structural changes and how this relates to synaptic plasticity. Lastly, we will test the long-standing notion that cAMP levels and the responsiveness of the cascade are altered in an animal model of PD. This project will advance our understanding of how SPNs work by unraveling cAMP’s role in plasticity, and potentially inform future strategies to combat PD.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "SCAMPICITY" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "SCAMPICITY" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

MarshFlux (2020)

The effect of future global climate and land-use change on greenhouse gas fluxes and microbial processes in salt marshes

Read More  

eXcape3D (2019)

Functional dissection of X-linked regulatory DNA: unravelling the impact of genome topology on transcriptional regulation

Read More  

STIMOS (2019)

Stimulation of Multiple Organoids Simultaneously

Read More