Opendata, web and dolomites

BIOVIB SIGNED

Electric Interactions and Structural Dynamics of Hydrated Biomolecules Mapped by Ultrafast Vibrational Probes

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BIOVIB project word cloud

Explore the words cloud of the BIOVIB project. It provides you a very rough idea of what is the project "BIOVIB" about.

separates    aqueous    paradigm    length    outer    multidimensional    shell    biomolecules    external    excitations    interplay    stark    milliseconds    channels    covalent    definition    structurally    direct    local    act    terahertz    nanometer    time    site    atmosphere    introduces    structure    retarded    scientific    molecules    absolute    stabilizing    interface    separated    environment    function    spectroscopy    strength    ion    rhodopsins    vibrational    unravel    magnesium    structures    secondary    strengths    fundamental    hydration    dna    shift    quantitative    theoretical    mechanisms    spatial    discerning    presently    experiments    dynamics    holds    instantaneous    channel    stranded    charge    contributions    exist    influenced    thz    forces    interactions    genuine    dynamically    noninvasive    mapping    double    ions    barely    bound    rna    resolved    gives    levels    biomolecular    solvated    water    breaking    fluctuating    single    fluctuation    calibrates    scattering    probes    tertiary    folding    atmospheres    molecular    biological    sensitive    composition    ray    scales    electric    versus    ground    sub    dipolar    frequencies    transmembrane   

Project "BIOVIB" data sheet

The following table provides information about the project.

Coordinator
FORSCHUNGSVERBUND BERLIN EV 

Organization address
address: RUDOWER CHAUSSEE 17
city: BERLIN
postcode: 12489
website: www.fv-berlin.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 2˙330˙492 €
 EC max contribution 2˙330˙492 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2024-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FORSCHUNGSVERBUND BERLIN EV DE (BERLIN) coordinator 2˙330˙492.00

Map

 Project objective

Biomolecules exist in an aqueous environment of dipolar water molecules and solvated ions. Their structure and biological function are strongly influenced by electric interactions with the fluctuating water shell and ion atmosphere. Understanding such interactions at the molecular level is a major scientific challenge; presently, their strengths, spatial range and interplay with other non-covalent interactions are barely known. Going far beyond existing methods, this project introduces the new paradigm of a direct time-resolved mapping of molecular electric forces on sub-nanometer length scales and at the genuine terahertz (THz) fluctuation frequencies. Vibrational excitations of biomolecules at the interface to the water shell act as sensitive noninvasive probes of charge dynamics and local electric fields. The new method of time resolved vibrational Stark shift spectroscopy with THz external fields calibrates vibrational frequencies as a function of absolute field strength and separates instantaneous from retarded environment fields. Based on this knowledge, multidimensional vibrational spectroscopy gives quantitative insight in the biomolecular response to electric fields, discerning contributions from water and ions in a site-specific way. The experiments and theoretical analysis focus on single- and double-stranded RNA and DNA structures at different hydration levels and with ion atmospheres of controlled composition, structurally characterized by x-ray scattering. As a ground-breaking open problem, the role of magnesium and other ions in RNA structure definition and folding will be addressed by following RNA folding processes with vibrational probes up to milliseconds. The impact of site-bound versus outer ions will be dynamically separated to unravel mechanisms stabilizing secondary and tertiary RNA structures. Beyond RNA research, the present approach holds strong potential for fundamental insight in transmembrane ion channels and channel rhodopsins.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BIOVIB" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BIOVIB" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

FatVirtualBiopsy (2020)

MRI toolkit for in vivo fat virtual biopsy

Read More  

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More  

MITOvTOXO (2020)

Understanding how mitochondria compete with Toxoplasma for nutrients to defend the host cell

Read More