Explore the words cloud of the NEMMO project. It provides you a very rough idea of what is the project "NEMMO" about.
The following table provides information about the project.
Coordinator |
FUNDACION TECNALIA RESEARCH & INNOVATION
Organization address contact info |
Coordinator Country | Spain [ES] |
Total cost | 4˙981˙007 € |
EC max contribution | 4˙981˙007 € (100%) |
Programme |
1. H2020-EU.3.3.2. (Low-cost, low-carbon energy supply) |
Code Call | H2020-LC-SC3-2018-RES-TwoStages |
Funding Scheme | RIA |
Starting year | 2019 |
Duration (year-month-day) | from 2019-04-01 to 2022-09-30 |
Take a look of project's partnership.
NEMMO will design, model and test downscaled prototypes of larger, lighter and more durable composite blades for >2MW floating tidal turbines to reduce LCoE of tidal energy to €0.15/kWh, meeting 2025 SET-Plan targets and making it competitive to competing fossil fuel sources. Novel blade designs with enhanced hydrodynamic performance due to the implementation of the different solutions, active flow control, materials and surfaces will be tested. Also, new nano-enhanced composites with properties that increase fatigue-, impact-, cavitation- and bio-fouling resistance of novel blade designs to prevent failures will be made. The project will then model, design and test the lifespan and resistance of the new composites for tidal turbine blades. This will involve: • accurate modelling of harsh hydrodynamic and environmental stresses for the development of testing and validation procedures • a new test rig for the evaluation of fatigue and cavitation on test probes and downscaled prototypes • a testing procedure including bio-fouling and marine environments evaluation in four different real scenarios • development of numerical models for the prediction of lifespan and mechanical properties as function of the materials properties, hydrodynamic loads, time and water composition • Novel tidal generator blades designs integrating active control flow, advanced surfaces and new nano-enhanced composites. The collective result of these innovations is 70% reduction in LCoE for tidal energy due to; (i) 50% CapEx reduction (lower material consumption and 25% lower cost of new composites), (ii) 2% lower FCR (increased understanding of failure and fatigue mechanisms and more durable composites with 66% higher lifespan), (iii) 40% reduction in O&M (reduced cavitation wear, bio-fouling and aging) and, (iv) 20% increase in AEP (enhanced hydrodynamic performance and higher inlet flow speeds for tidal turbine).
D7.2 Project Website | Websites, patent fillings, videos etc. | 2019-11-22 11:31:41 |
D7.1 Material for Visual Identity | Websites, patent fillings, videos etc. | 2019-11-22 11:31:41 |
Take a look to the deliverables list in detail: detailed list of NEMMO deliverables.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NEMMO" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "NEMMO" are provided by the European Opendata Portal: CORDIS opendata.
Hybrid Variable Geometry Ejector Cooling and Heating System for Buildings Driven by Solar and Biomass Heat
Read MoreCost-effective transformation of a Highly-Efficient, Advanced, Thermal Ultra-SuperCritical coal-fired power plant into a CHP by retrofitting and integrating an ARBAFLAME biomass upgrading process.
Read More