Opendata, web and dolomites

EngPTC2 SIGNED

Exploring new technologies for the next generation pulse tube cryocooler below 2K

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "EngPTC2" data sheet

The following table provides information about the project.

Coordinator
CONSERVATOIRE NATIONAL DES ARTS ET METIERS 

Organization address
address: RUE SAINT MARTIN 292
city: PARIS CEDEX 03
postcode: 75141
website: http://www.ict-phydyas.org/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country France [FR]
 Total cost 196˙707 €
 EC max contribution 196˙707 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-09-02   to  2021-09-01

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    CONSERVATOIRE NATIONAL DES ARTS ET METIERS FR (PARIS CEDEX 03) coordinator 196˙707.00

Map

 Project objective

With the development of physics and new technologies, it has proposed some new challenges for the traditional 4K pulse tube cryocooler (PTC). The next generation 4K PTC with smaller size, lower power consumption, higher efficiency and lower temperature is anticipated. This project aims to develop a new type 2K PTC with 3He-4He mixtures as working fluid. This work will not only explore its internal new cooling mechanism, but also break up the limit temperature of Stirling type PTC, which would extend the application areas for the next generation PTC, especially for the areas of space exploration and quantum computing. The proposed new type PTC will use the unique properties of 3He–4He mixtures to improve its performance. To implement this project, it need first to clarify the underlying working mechanism of mixture gas in PTC, which will provide theoretical foundations for designing this kind of PTC. And then to develop experimental system to valid theoretical model and explore its limit temperature. Specifically, the Fellow will (a) develop a full temperature range thermal-properties database of 3He-4He mixtures, to be used to CFD simulation; (b) develop a theoretical and simulation model to clarify the mechanism of cooling effect in this PTC; (c) experimental verification the numerical results and optimization of its performance. The new results of this project will help us to shape the emerging research area of next generation PTC. The Fellow is currently at forefront of international advances in 4K PTC. With support from the hosting institutions LNE/Cnam, a timely award of the Marie SkÅ‚odowska-Curie Fellowship will provide the applicant the necessary resources and access to expertise to make rapid progress in this emerging research area and become an independent researcher, ready to compete globally.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "ENGPTC2" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "ENGPTC2" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More  

LYSOKIN (2020)

Architecture and regulation of PI3KC2β lipid kinase complex for nutrient signaling at the lysosome

Read More  

EcoSpy (2018)

Leveraging the potential of historical spy satellite photography for ecology and conservation

Read More