Opendata, web and dolomites

BacDrug SIGNED

Bacterial membrane vesicles a novel delivery system for the treatment of multi-drug resistant Gram-negative bacterial infections.

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 BacDrug project word cloud

Explore the words cloud of the BacDrug project. It provides you a very rough idea of what is the project "BacDrug" about.

diseases    indispensable    bacterial    genetic    burden    antibiotics    provides    placed    combines    lipid    global    selective    tackle    pass    pathogens    faculty    microbiology    membrane    training    lactis    mortality    highest    urgent    vesicles    prof    negative    consequently    gram    collaborative    techniques    fellowship    treatment    themselves    truly    treatments    alarming    coupled    environment    world    pathogenic    exploited    drug    engineering    stevens    strategy    resistant    alternative    harness    therapeutic    kill    globally    prevention    human    andrew    cargo    dearth    public    organization    caused    led    edwards    load    nanocarriers    combat    combined    drugs    delivering    chemical    health    icl    expertise    outcome    bacteria    groups    dr    spread    molecular    outer    acute    innovative    molly    maximise    frequent    protect    strategies    bacdrug    infections    setting    lactococcus    translational    biology    bmvs    clinical    resistance    payload    clinics    toxic    cross    successful    bioengineering    nanotechnology    materials    class    shortage    interdisciplinary   

Project "BacDrug" data sheet

The following table provides information about the project.

Coordinator
IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE 

Organization address
address: SOUTH KENSINGTON CAMPUS EXHIBITION ROAD
city: LONDON
postcode: SW7 2AZ
website: http://www.imperial.ac.uk/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country United Kingdom [UK]
 Total cost 212˙933 €
 EC max contribution 212˙933 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-01-01   to  2021-12-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    IMPERIAL COLLEGE OF SCIENCE TECHNOLOGY AND MEDICINE UK (LONDON) coordinator 212˙933.00

Map

 Project objective

'Bacterial infections are a significant public health challenge and a major cause of human mortality globally. Antibiotics are indispensable for the treatment and prevention of infections caused by bacteria. However, global spread of drug-resistant bacteria, coupled with a dearth of new antibiotics in development has led to an alarming shortage of effective drugs. Gram-negative bacteria, in particular, protect themselves against antibiotics with a highly selective outer membrane. The high burden of diseases caused by Gram-negative bacteria, combined with their frequent multi-drug resistance has placed them as world´s highest-priority pathogens by the World Health Organization. Consequently, there is an urgent need for novel therapeutic approaches that combat Gram-negative bacterial pathogens. The goal of 'BacDrug' is to use lipid-based bacterial membrane vesicles (BMVs) produced by non-pathogenic Lactococcus lactis as delivery system. BMVs have great potential as nanocarriers to by-pass the outer membrane and deliver their toxic payload to kill drug-resistant Gram-negative pathogens. A range of strategies will be used to load BMVs with cargo, including genetic engineering of L. lactis as well as chemical treatments. This Fellowship will harness expertise and techniques across microbiology, molecular biology, nanotechnology and drug design to deliver a successful outcome. The collaborative, truly interdisciplinary, cross faculty setting within the groups of Prof Molly Stevens (materials and bioengineering) and Dr Andrew Edwards (molecular microbiology) at ICL combines world-class expertise and provides an environment to maximise the success of this Fellowship, both in terms of the delivering the project and the training opportunities provided. Moreover, this innovative, alternative strategy to tackle drug-resistant Gram-negative bacterial infections has a high translational potential, which will be exploited via the clinical and translational research clinics at ICL.'

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "BACDRUG" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "BACDRUG" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

GENESIS (2020)

unveilinG cEll-cell fusioN mEdiated by fuSexins In chordateS

Read More  

BRCAstem (2020)

Monitoring cancer stem cell dynamics and therapeutic response in BRCA2-deficient breast tumour cells

Read More  

GLIOHAB (2019)

Multiparametric imaging of glioblastoma tumour heterogeneity for supporting treatment decisions and accurate prognostic estimation

Read More