Opendata, web and dolomites

EMAGICS SIGNED

Atomistic spin dynamics and spectroscopic investigation of spin-induced magnetoelectric multiferroic materials

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 EMAGICS project word cloud

Explore the words cloud of the EMAGICS project. It provides you a very rough idea of what is the project "EMAGICS" about.

ferroelectricity    inconclusive    ab    dynamical    investigation    physics    frequently    magnonics    sustainable    champions    dynamics    synthesis    training    fundamental    site    resembling    underlying    prof    techniques    critical    storage    multiferroics    energetically    m3teo6    background    combination    family    mechanisms    sanvito    static    mf    materials    compounds    researcher    principles    data    metal    mfs    predictions    anions    employing    magnetization    supervisor    me    leads    pursuit    efforts    magnetoelectric    experimentally    scientific    first    name    form    calculations    strategies    emagics    initio    manipulate    hybrid    solid    spintronics    ferromagnetism       despite    thereafter    hidden    celebrated    electric    sensing    magnetoelectricity    community    experimental    coupling    candidates    possibly    atomistic    combine    co    enhancement    mixed    unveil    transition    energy    ambiguous    harvesting    ni3teo6    ni    series    origin    spectroscopic    temperatures    expert    theoretical    spin    misinterpreted    mn    insights    explore    few    performance    technological    single    valence   

Project "EMAGICS" data sheet

The following table provides information about the project.

Coordinator
THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN 

Organization address
address: College Green
city: DUBLIN
postcode: 2
website: www.tcd.ie

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Ireland [IE]
 Total cost 184˙590 €
 EC max contribution 184˙590 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-05-06   to  2021-05-05

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    THE PROVOST, FELLOWS, FOUNDATION SCHOLARS & THE OTHER MEMBERS OF BOARD OF THE COLLEGE OF THE HOLY & UNDIVIDED TRINITY OF QUEEN ELIZABETH NEAR DUBLIN IE (DUBLIN) coordinator 184˙590.00

Map

 Project objective

Magnetoelectric (ME) multiferroics (MFs), materials that can combine ferromagnetism and ferroelectricity, are strong candidates for a wide range of novel hybrid technological applications, such as sensing, energy harvesting, data storage, magnonics, and spintronics, to name a few. Most importantly, the ability to manipulate the magnetization by electric fields leads to simple, cost-effective and energetically sustainable technological strategies. Despite the great efforts of the MF scientific community, the origin of the ME coupling in a series of MF materials still remains ambiguous. Experimental findings may frequently be inconclusive and misinterpreted; therefore a solid theoretical approach is essential for developing further insights in the fundamental physics hidden behind magnetoelectricity. Ni3TeO6 champions both the static and dynamical ME effects among the single-phase MFs. In pursuit of new spin-induced MFs, resembling the celebrated Ni3TeO6, we propose the investigation of a series of compounds of the form M3TeO6 (M=Ni, Mn, Co), with a combination of mixed-valence transition metal anions on the M-site, by employing a combination of first principles calculations of spin dynamics together with experimental spectroscopic investigation. The researcher has experience in spectroscopic techniques for ME MFs, background in first principles calculations, and aims at training in the field of first principles calculations for spin dynamics. The supervisor Prof. Sanvito is an expert in ab initio predictions with atomistic spin dynamics. EMAGICS’ target is to unveil the underlying mechanisms that lead to the enhancement of the ME MF properties, as well as possibly increase the critical temperatures in favour of the applications. Thereafter, EMAGICS will be able to propose the synthesis of new compounds of the family M3TeO6, with a combination of mixed-valence transition metal anions on the M-site, and experimentally explore possible MF performance.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EMAGICS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EMAGICS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

RAMBEA (2019)

Realistic Assessment of Historical Masonry Bridges under Extreme Environmental Actions

Read More  

PROSPER (2019)

Politics of Rulemaking, Orchestration of Standards, and Private Economic Regulations

Read More  

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More