Opendata, web and dolomites

EMOF SIGNED

Synthesizing and Investigating the Exotic Electronic Properties of Two-Dimensional Metal-Organic Frameworks

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 EMOF project word cloud

Explore the words cloud of the EMOF project. It provides you a very rough idea of what is the project "EMOF" about.

initial    packages    versatile    structure    metal    graphene    underlying    modified    easily    guarantee    biggest    bonding    spintronics    chemistry    tunable    platform    characterization    frameworks    intrinsic    realize    insulating    atomic    dimensional    surfaces    polymers    phenomenon    predicted    exotic    substrate    spectroscopy    temperature    breaking    electronic    group    position    supramolecular    drastically    synthesis    spin    scanning    molecular    tunneling    band    contact    metals    microscopy    tuning    synthesized    longer    electronics    physics    dissipationless    ferromagnetism    ligands    condensed    structural    vacuum    divided    half    technological    superconductivity    organic    mofs    adsorbates    host    liquid    substrates    discussed    topological    area    techniques    interacting    interact    ultra    synthesizing    gated    force    contributions    quantum    2d    scaled    route    ground    insulators    kinds    clusters    metallic    trivial    inert   

Project "EMOF" data sheet

The following table provides information about the project.

Coordinator
AALTO KORKEAKOULUSAATIO SR 

Organization address
address: OTAKAARI 1
city: ESPOO
postcode: 2150
website: http://www.aalto.fi/en/

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Finland [FI]
 Total cost 190˙680 €
 EC max contribution 190˙680 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    AALTO KORKEAKOULUSAATIO SR FI (ESPOO) coordinator 190˙680.00

Map

 Project objective

Metal-organic frameworks (MOFs) are coordination polymers synthesized by bonding organic ligands with metals or metal clusters. Recently, exotic electronic properties have been predicted theoretically for two-dimensional (2D) MOFs, such as topological non-trivial band structure (2D organic topological insulators and so on), superconductivity, half-metallic ferromagnetism and quantum spin liquid. 2D MOFs have been synthesized on metal surfaces by following the concepts of supramolecular coordination chemistry. However, molecular adsorbates on metal surfaces interact strongly with the underlying metal substrate. Therefore, their electronic properties are drastically modified.

This project will focus on synthesizing and investigating the intrinsic exotic electronic properties of 2D MOFs on insulating, weakly interacting, and tunable gated substrates by ultra-high vacuum low-temperature Scanning Tunneling Microscopy and Spectroscopy with non-contact Atomic Force Microscopy. In order to achieve these ambitious targets, I have divided this proposal into three work packages: 1. synthesizing 2D MOFs on inert surfaces; 2. structural and electronic characterization of 2D MOFs; 3. tuning the exotic electronic properties of 2D MOFs on gated graphene devices. The applicant and the host group have initial results on the topics discussed in this proposal and are thus in a unique position to make ground-breaking contributions in this area.

Understanding and tuning the growth and the electronic properties of MOFs will offer a versatile platform to realize topological electronics as well as different kinds of novel phenomenon in condensed matter physics. The bottom-up synthesis techniques guarantee a technological route which can easily be scaled-up to be used for applications. Longer term, the biggest impact is expected through applications of MOFs in dissipationless electronics and spintronics.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EMOF" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EMOF" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

LYSOKIN (2020)

Architecture and regulation of PI3KC2β lipid kinase complex for nutrient signaling at the lysosome

Read More  

DIFFER (2020)

Determinants of genetic diversity: Important Factors For Ecosystem Resilience

Read More  

OSeaIce (2019)

Two-way interactions between ocean heat transport and Arctic sea ice

Read More