Opendata, web and dolomites

EmbryoPAINT SIGNED

PAINTing the architecture of the totipotency gene network during early mammalian development

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "EmbryoPAINT" data sheet

The following table provides information about the project.

Coordinator
EUROPEAN MOLECULAR BIOLOGY LABORATORY 

Organization address
address: Meyerhofstrasse 1
city: HEIDELBERG
postcode: 69117
website: http://www.embl.de

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Germany [DE]
 Total cost 162˙806 €
 EC max contribution 162˙806 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2020
 Duration (year-month-day) from 2020-09-01   to  2022-08-31

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    EUROPEAN MOLECULAR BIOLOGY LABORATORY DE (HEIDELBERG) coordinator 162˙806.00

Map

 Project objective

The three-dimensional architecture of the genome regulates its fundamental functions such as the transcription or replication of DNA. Thus, chromatin organisation is crucially important for key aspects of cell biology, such as the differentiation of stem cells in the early embryo. While recent studies have shown that the mammalian genome rearranges extensively towards a more ordered state after the first few embryonal divisions, many fundamental questions remain unanswered. For example, it is not known whether totipotent cells have a well-defined genomic architecture or whether this architecture is highly heterogeneous between different cells and embryos. Further, it is unclear if early cell fate decisions are driven by a reproducible coordinated rearrangement of pluripotency-related genes, or if this is stochastic process. These questions could best be tackled by directly assessing the physical genome structure and architecture of pluripotency genes in single stem cells inside the whole embryo. In my project, I will pursue this ambitious aim by exploiting recent breakthroughs in 3D super-resolution microscopy, namely the development of an inverted lattice light-sheet microscope, highly multiplexed oligo-DNA-PAINT, and advanced computational algorithms, to study the physical 3D architecture of the genomic network of totipotency and pluripotency genes. Thus, I will for the first time be able to unravel the structural determinants of the transition from totipotency to the pluripotent and differentiated state during early mammalian development.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "EMBRYOPAINT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "EMBRYOPAINT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EXPAND (2019)

Examining pan-neotropical diasporas

Read More  

COSMOS (2020)

The Conformation Of S-phase chroMOSomes

Read More  

MSOPGDM (2019)

Mechanistic studies of prokaryotic genome defense mechanisms

Read More