Explore the words cloud of the Stable PeLEDs project. It provides you a very rough idea of what is the project "Stable PeLEDs" about.
The following table provides information about the project.
Coordinator |
THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE
Organization address contact info |
Coordinator Country | United Kingdom [UK] |
Total cost | 112˙466 € |
EC max contribution | 112˙466 € (100%) |
Programme |
1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility) |
Code Call | H2020-MSCA-IF-2018 |
Funding Scheme | MSCA-IF-EF-ST |
Starting year | 2019 |
Duration (year-month-day) | from 2019-09-01 to 2020-08-31 |
Take a look of project's partnership.
# | ||||
---|---|---|---|---|
1 | THE CHANCELLOR MASTERS AND SCHOLARSOF THE UNIVERSITY OF CAMBRIDGE | UK (CAMBRIDGE) | coordinator | 112˙466.00 |
The organometal halide perovskites as optoelectronic materials possess numerous advantages of high photoluminescence quantum efficiencies, low cost, low-temperature and large-area solution process, exhibiting great potential in display and lighting applications. Considerable progress has been made in efficiency of perovskite light-emitting diode (PeLED), but the stability issues limit its commercialization. The goal of this project is to achieve stable and efficient PeLEDs based on addressing the root causes of the degradation of device under current stress, which may be related to Auger recombination, ion migration and Joule heating. The plan is to incorporate many of the technologies first developed in the host group at the Cavendish Laboratory and my group at the Nanjing Tech University, which have been global leaders in PeLEDs development over the last few years. This project will evaluate the lifetime of PeLEDs under varying current densities and temperatures. Microscopic post-mortem examination and photophysics characterization of aged devices will be used to determine failure mechanisms. The fundamental physics-based models of degradation will be developed. Finally, the project will achieve high efficiency and long operational lifetime PeLEDs by optimization of materials, deposition process and device structure. This project involves multiple disciplines and complementary expertise. The training will broaden my knowledge on photophysics, device physics and strengthen my transferable skills. Further, it will allow the transfer of my knowledge to the host group and develop a lasting collaboration. It is expected that the implementation of this project will promote the commercialization of PeLEDs, and have long lasting benefits both for fundamental research and industry in Europe.
Are you the coordinator (or a participant) of this project? Plaese send me more information about the "STABLE PELEDS" project.
For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.
Send me an email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.
Thanks. And then put a link of this page into your project's website.
The information about "STABLE PELEDS" are provided by the European Opendata Portal: CORDIS opendata.