Opendata, web and dolomites

GAlBs SIGNED

Novel porous graphite as cathodes for advanced aluminium-ion batteries

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 GAlBs project word cloud

Explore the words cloud of the GAlBs project. It provides you a very rough idea of what is the project "GAlBs" about.

reversible    tantalising    breakthrough    synthesis    battery    supply    capability    boost    demonstrated    material    li    cell    cathodes       unveil    framework    weak    aluminium    albs    graphite    2040    electrolyte    sluggish    characterisation    fabricate    critical    cheaper    cycle    shortfalls    safe    redox    chemistry    lib    morphology    al    market    demand    primarily    tons    libs    metric    er    17    overcome    disintegrating    skill    sales    inefficient    million    electric    components    efficient    unprecedented    rechargeable    launch    holds    conductivity    stability    viability    lithium    inevitable    industry    cycling    scientific    structural    electrical    operation    enormous    batteries    graphitic    cathode    abrupt    protocol    complexes    necessitate    al3    density    intrinsic    significantly    ion    hidden    rapid    lack    flaws    plausible    sufficient    energy    standard    nanopore    vehicles    durable    mechanisms    materials    serious    electronic    55    poor    penetration    conduct    brain    metal    performance    architecture    ev    rate    evs    dominant    prospect    emerge    car    issue    limitations    replacement    intercalation    sustainable   

Project "GAlBs" data sheet

The following table provides information about the project.

Coordinator
UNIVERSITY OF LIMERICK 

Organization address
address: NATIONAL TECHNOLOGICAL PARK, PLASSEY
city: LIMERICK
postcode: -
website: www.ul.ie

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Ireland [IE]
 Total cost 196˙590 €
 EC max contribution 196˙590 € (100%)
 Programme 1. H2020-EU.1.3.2. (Nurturing excellence by means of cross-border and cross-sector mobility)
 Code Call H2020-MSCA-IF-2018
 Funding Scheme MSCA-IF-EF-ST
 Starting year 2019
 Duration (year-month-day) from 2019-05-01   to  2021-04-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    UNIVERSITY OF LIMERICK IE (LIMERICK) coordinator 196˙590.00

Map

 Project objective

The demand for electric vehicles (EVs) is expected to rise significantly to ~55% of all new car sales by 2040. This would necessitate ~0.8 million metric tons of Li-metal for standard lithium ion battery (LIB) production. However, a market dominant EV-industry would only have sufficient Li-supply for at most 17 years due to inevitable shortfalls on sustainable-supply of lithium. Aluminium based rechargeable batteries (AlBs) offer tantalising prospect of high energy density batteries using components that can facilitate safe-by-design production of cheaper, durable and sustainable batteries. This battery technology, while having enormous potential as a replacement for LIBs, has not yet demonstrated viability due to critical limitations, primarily the lack of an efficient cathode material that can cycle Al3 or Al-ion complexes for high energy density and stability. By far, the most plausible cathodes for AlBs are based on graphitic materials. However, present graphitic cathodes are inefficient due to serious design flaws. This project will develop a rapid synthesis protocol to fabricate a very unique graphitic material with unprecedented brain-like morphology and also develop mechanisms to control the intrinsic nanopore architecture. The project will conduct a detailed structural analysis and characterisation of the novel graphitic framework as a cathode for AlBs. This novel graphite holds the key to a significant breakthrough and will advance the development of AlBs by: 1) addressing the issue of poor electrolyte penetration and improve the sluggish reversible ion intercalation to boost rate performance and cycling, 2) improve the weak electronic/electrical conductivity properties of present cathodes, 3) overcome the problematic abrupt cathode disintegrating during cell operation, and 4) unveil the hidden cathode redox chemistry. The ER will emerge from this project with new/advanced skill-set and the capability to launch his own high-level scientific research.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "GALBS" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "GALBS" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.3.2.)

EVENTS (2020)

Affective work-related daily events, and changing characteristics of the work context: New challenges for management practices to deliver employees’ well-being and workplace performance

Read More  

IRF4 Degradation (2019)

Using a novel protein degradation approach to uncover IRF4-regulated genes in plasma cells

Read More  

PROSPER (2019)

Politics of Rulemaking, Orchestration of Standards, and Private Economic Regulations

Read More