Opendata, web and dolomites

NOQIA SIGNED

NOvel Quantum simulators – connectIng Areas

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

Project "NOQIA" data sheet

The following table provides information about the project.

Coordinator
FUNDACIO INSTITUT DE CIENCIES FOTONIQUES 

Organization address
address: AVINGUDA CARL FRIEDRICH GAUSS 3
city: Castelldefels
postcode: 8860
website: www.icfo.eu

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Spain [ES]
 Total cost 2˙164˙243 €
 EC max contribution 2˙164˙243 € (100%)
 Programme 1. H2020-EU.1.1. (EXCELLENT SCIENCE - European Research Council (ERC))
 Code Call ERC-2018-ADG
 Funding Scheme ERC-ADG
 Starting year 2019
 Duration (year-month-day) from 2019-07-01   to  2024-06-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    FUNDACIO INSTITUT DE CIENCIES FOTONIQUES ES (Castelldefels) coordinator 2˙164˙243.00

Map

 Project objective

Quantum simulators (QS) are experimental systems that allow mimic hard to simulate models of condensed matter, high energy physics and beyond. QS have various platforms: from ultracold atoms and ions to superconducting qubits. They constitute the important pillar of quantum technologies (QT), and promise future applications in chemistry, material science and optimization problems. Over the last decade, QS were particularly successful in mimicking topological effects in physics (TEP) and in developing accurate quantum validation/certification (QVC) methods. NOQIA is a theory project, aimed at introducing the established field of QSTEPQVC into two novel areas: physics of ultrafast phenomena and attoscience (AS) on one side, and quantum machine learning (ML) and neural networks (NN) on the other. This will open up new horizons/opportunities for research both in AS and in ML/NN. For instance, in AS we will address the question if intense laser physics may serve as a tool to detect topological effects in solid state and strongly correlated systems. We will study response of matter to laser pulses carrying topological signatures, to determine if they can induce topological effects in targets. We will design/analyze QS using trapped atoms to understand and detect TEP in the AS. On the ML/NN side, we will apply classical ML to analyze, design and control QS for topological systems, in order to understand and optimize them. Conversely, we will transfer many-body techniques to ML in order to analyze and possibly improve performance of classical machine learning. We will design and analyze quantum neural network devices that will employ topology in order to achieve robust quantum memory or information processing. We will design/study attractor neural networks with topological stationary states, or feed-forward networks with topological Floquet and time-crystal states. Both in AS and ML/NN, NOQIA will rely on quantum validation and certification protocols and techniques.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "NOQIA" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "NOQIA" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.1.1.)

E-DIRECT (2020)

Evolution of Direct Reciprocity in Complex Environments

Read More  

REPLAY_DMN (2019)

A theory of global memory systems

Read More  

TransTempoFold (2019)

A need for speed: mechanisms to coordinate protein synthesis and folding in metazoans

Read More