Opendata, web and dolomites

Foresight

Foresight: Autonomous machine monitoring and prognostics system for the Oil and Gas and Maritime sectors

Total Cost €

0

EC-Contrib. €

0

Partnership

0

Views

0

 Foresight project word cloud

Explore the words cloud of the Foresight project. It provides you a very rough idea of what is the project "Foresight" about.

nominal    speed    adapt    designed    nowadays    machinery    flows    gathered    technologies    appropriate    platforms    drilling    tbm    98    learning    time    health    connections    packets    replacement    expert    labour    collect    reduce    autonomously    machine    competitors    forecast    unnecessary    reducing    reliability    tailor    grant    possibility    environmental    downtimes    synthesizing    removing    requiring    data    actions    modus    mobile       dated    unmaintained    vibration    communication    lifecycle    calculations    onto    onshore    generate    cloud    onboard    mainly    minimising    outperforms    human    inefficient    relieves    units    waste    holistically    module    excessive    bearing    crews    installation    vessels    monitoring    gigabytes    software    parts    catastrophes    index    services    offshore    happen    obsolete    provides    lowering    unexpected    size    hardware    ml    fleet    injuries    monitor    handled    avoiding    operation    maintenance    model    send    sound    sensors   

Project "Foresight" data sheet

The following table provides information about the project.

Coordinator
MACHINE PROGNOSTICS AS 

Organization address
address: JON LILLETUNS VEI 9
city: GRIMSTAD
postcode: 4879
website: n.a.

contact info
title: n.a.
name: n.a.
surname: n.a.
function: n.a.
email: n.a.
telephone: n.a.
fax: n.a.

 Coordinator Country Norway [NO]
 Project website https://www.machineprognostics.no
 Total cost 71˙429 €
 EC max contribution 50˙000 € (70%)
 Programme 1. H2020-EU.3. (PRIORITY 'Societal challenges)
2. H2020-EU.2.3. (INDUSTRIAL LEADERSHIP - Innovation In SMEs)
3. H2020-EU.2.1. (INDUSTRIAL LEADERSHIP - Leadership in enabling and industrial technologies)
 Code Call H2020-SMEInst-2018-2020-1
 Funding Scheme SME-1
 Starting year 2019
 Duration (year-month-day) from 2019-04-01   to  2019-09-30

 Partnership

Take a look of project's partnership.

# participants  country  role  EC contrib. [€] 
1    MACHINE PROGNOSTICS AS NO (GRIMSTAD) coordinator 50˙000.00

Map

 Project objective

Maintenance processes applied on vessels and offshore platforms are obsolete. The technologies commonly applied to monitor machinery generate Gigabytes of technical data, requiring an expert to process it. Data cannot be handled by real-time monitoring services onshore, as the data connections available offshore are not designed for such flows. As a result, only 2% of the Mobile Drilling Units (MODUs) fleet in operation nowadays implement a real-time machinery monitoring, while the other 98% apply the out-dated Time-Based Maintenance (TBM) model. TBM increases lifecycle costs due to unexpected downtimes, higher labour costs and waste of parts in working condition. MODUs and platforms are bearing today unnecessary and excessive costs due to inefficient maintenance, even human injuries or environmental catastrophes are more likely to happen due to unmaintained machinery. Our technology provides to vessels’ and platforms’ crews the possibility to monitor machinery health in real-time, allowing them to forecast and undertake the most appropriate actions. Foresight’s hardware is composed mainly by vibration monitoring equipment, that grant an easy installation onto any type of machinery. Foresight’s sensors continuously monitor the machinery, collect data, process them to reduce the size of the data packets and send them to the software on the cloud. Foresight Machine Learning (ML) module holistically processes the data gathered by sensors, synthesizing them into a comprehensive Health Index. It outperforms competitors in speed and reliability and is able to autonomously adapt and tailor its calculations on each machinery nominal behaviour. Foresight relieves vessels and platforms maintenance costs by: (1) lowering the number of sensors needed; (2) reducing data communication needs; (3) removing the need for a technical expert onboard (4) minimising unexpected downtimes; (5) avoiding replacement of sound parts.

Are you the coordinator (or a participant) of this project? Plaese send me more information about the "FORESIGHT" project.

For instance: the website url (it has not provided by EU-opendata yet), the logo, a more detailed description of the project (in plain text as a rtf file or a word file), some pictures (as picture files, not embedded into any word file), twitter account, linkedin page, etc.

Send me an  email (fabio@fabiodisconzi.com) and I put them in your project's page as son as possible.

Thanks. And then put a link of this page into your project's website.

The information about "FORESIGHT" are provided by the European Opendata Portal: CORDIS opendata.

More projects from the same programme (H2020-EU.3.;H2020-EU.2.3.;H2020-EU.2.1.)

DNA DS (2019)

DNA Data storage

Read More  

Keelcrab (2019)

Keelcrab the Drone for an automated hull cleaning: fast & essential

Read More  

ERGOVIAkinematix (2018)

New wearable measurement devices for Industry 4.0 based on gaming motion-capture system

Read More